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Abstract—Definitions of election verifiability in the compu-
tational model of cryptography are proposed. The definitions
formalize notions of voters verifying their own votes, auditors
verifying the tally of votes, and auditors verifying that only
eligible voters vote. The Helios (Adida et al., 2009) and JCJ
(Juels et al., 2010) election schemes are analyzed using these
definitions. Helios 4.0 satisfies the definitions, but Helios 2.0 does
not because of previously known attacks. JCJ does not satisfy
the definitions because of a trust assumption it makes, but it
does satisfy a weakened definition. Two previous definitions of
verifiability (Juels et al., 2010; Cortier et al., 2014) are shown to
permit election schemes vulnerable to attacks, whereas the new
definitions prohibit those schemes.

I. INTRODUCTION

Electronic voting systems that have been deployed in real-
world, large-scale public elections place extensive trust in soft-
ware and hardware. Unfortunately, instead of being trustwor-
thy, many systems are vulnerable to attacks that could bring
election outcomes into disrepute [22], [58]], [76], [[110]. So
relying solely on trust in voting systems is unwise; verification
of election outcomes is essential[]

Election verifiability enables voters and auditors to ascertain
the correctness of election outcomes, regardless of whether
the software and hardware of the voting system are trustwor-
thy (1], [2], [31], [77], [100]. Kremer et al. [85]] decompose
election verifiability into three aspects

o Individual verifiability: voters can check that their own

ballots are recorded.

e Universal verifiability: anyone can check that the tally of

recorded ballots is computed properly.

o Eligibility verifiability: anyone can check that each tallied

vote was cast by an authorized voter.

We propose new definitions of these three aspects of verifi-
ability in the computational model of cryptography. We show

' Doveryai, no proveryai (trust, but verify) says the Russian proverb.
2This decomposition has been criticized [91]; we refute that criticism in
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that individual and universal verifiability are orthogonal, and
that eligibility verifiability implies individual verifiability.

Because some electronic voting systems implement voter
authentication themselves, whereas other systems outsource
voter authentication to third parties, we develop two variants of
our definitions—one for systems with internal authentication
and another for systems with external authentication. We
employ our definitions to analyze the verifiability of two well-
known election schemes, JCJ [79] and Helios [5]]. JCJ is an
election scheme that achieves coercion resistance and has been
implemented as Civitas [35[]; it implements its own internal
authentication. Helios is a web-based voting system that has
been deployed in the real-world and outsources authentication.

The Helios 2.0 election scheme is known to have wvul-
nerabilities that enable attacks on verifiability, and several
patches for those vulnerabilities have been proposed [19], [20],
[39]I, [40]. By employing those proposed patches, we obtain
a scheme called Helios 4.0 that satisfies our definition of
election verifiability with external authentication. Helios 2.0,
as expected, fails to satisfy our definition.

The JCJ election scheme does not satisfy our definition
of eligibility verifiability, because an adversary who learns
the tallier’s private key could cast unauthorized votes. We
introduce a weakened definition of eligibility verifiability,
incorporating JCJ’s trust assumption that the private key is
unknown to the adversary, and show that JCJ satisfies our
weakened definition of election verifiability with internal au-
thentication.

Our definitions of election verifiability improve upon two
previous definitions [38]], [79] by detecting a new class of
collusion attacks, in which the tallying algorithm announces
an incorrect tally, and the verification algorithm colludes with
the tallying algorithm to accept the incorrect tally. Examples
of collusion attacks include vote stuffing, and announcing
tallies that are independent of the election. Our definitions
also improve upon those previous definitions by detecting



a new class of biasing attacks, in which the verification
algorithm rejects some legitimate election outcomes. Examples
of biasing attacks include rejecting outcomes in which a
particular candidate does not win, and rejecting all election
outcomes, even correct outcomes.
This paper thus contributes to the security of electronic
voting systems by
« proposing computational definitions of election verifiabil-
ity,
o showing that individual, universal, and eligibility verifia-
bility are mostly orthogonal properties of voting systems,
« proving that well-known election schemes do (or do not)
satisfy election verifiability, and
« identifying collusion and biasing attacks as new classes
of attacks on voting systems and demonstrating that they
are not detected by two earlier definitions.

Ours are the first proofs that Helios 4.0 and JCJ satisfy a
computational definition of verifiability.

Structure: Section [[I] defines election verifiability with ex-
ternal authentication. Section |III| analyzes Helios. Section
defines election verifiability with internal authentication. Sec-
tion [V] analyzes JCJ. Section [VI]introduces collusion and bias-
ing attacks. Section|[VII|reviews related work, and Section [VII]|
concludes. Appendix [A| defines cryptographic primitives. The
remaining appendices explore alternative definitions of verifi-
ability, give the details of Helios and JCJ, and present proofs.

II. EXTERNAL AUTHENTICATION

Some election schemes do not implement authentication
themselves, but instead rely on an external authentication
mechanism. Helios, for example, supports authentication with
Facebook, Google and Yahoo credentials In essence, the
election scheme outsources ballot authentication. We begin by
defining election verifiability for that model.

A. Election scheme

An election scheme with external authentication, which
henceforth in this section we abbreviate as “election scheme,”
is a tuple (Setup, Vote, Tally, Verify) of probabilistic polyno-
mial-time (PPT) algorithms:

o Setup, denote (PK1,SK7,mp, m¢g) < Setup(k), is
executed by the fallier, who is responsible for tallying
ballotsE] Setup takes a security parameter k as input and
outputs a key pair (PK 7, SK 1), a maximum number of
ballots mp, and a maximum number of candidates mclﬂ

3https://github.com/benadida/helios- server/tree/master/helios_auth/auth_
systems, accessed 4 Aug 2015.

#Let Alg(in;r) denote the output of probabilistic algorithm Alg on input
in and random coins r. Let Alg(in) denote Alg(in;r), where r is chosen
uniformly at random. And let <— denote assignment.

3Some election schemes (e.g., Helios and JCJ) permit the tallier’s role to be
distributed amongst several talliers. For simplicity, we consider only a single
tallier in this paper.

%The maximum ballots and candidate numbers are used to formalize
Correctness. Helios requires that the maximum number of ballots is less than
or equal to the size of the underlying encryption scheme’s message space, and
JCIJ requires that the maximum number of candidates is less than or equal to
the size of the underlying encryption scheme’s message space.

o Vote, denoted b «+ Vote(PK,nc,p,k), is executed
by voters. A voter makes a choice of candidate from
a sequence ci,...,Cn, of candidates. A well-formed
choice is an integer 3, such that 1 < 8 < ne. Vote takes
as input the public key PK s of the tallier, the number
nco of candidates, the voter’s choice 5 of candidate, and
security parameter k. It outputs a ballot b, or error symbol
L. An error might occur if the candidate choice is not
well-formed or for other reasons particular to the election
scheme.

o Tally, denoted (X, P) + Tally(PKy,SK+, BB,nc, k),
is executed by the tallier. It involves a public bulletin
board BB, which we model as a set[] Tally takes as
input the public key PK 7 and private key SK of the
tallier, the bulletin board BB, the number of candidates
ne, and security parameter k. It outputs a tally X and a
non-interactive proof P that the tally is correct. A tally
is a vector X of length ng such that X[j] indicates the
number of votes for candidate c;

« Verify, denoted v < Verify(PK 7, BB,n¢, X, P, k), can
be executed by anyone to audit the election. Verify takes
as input the public key PK 1 of the tallier, the bulletin
board BB, the number of candidates nc, a tally X, a
proof P of correct tallying, and security parameter k. It
outputs a bit v, which is 1 if the tally successfully verifies
and 0 otherwise. We assume that Verify is deterministic.

Election schemes must satisfy Correctness, which asserts

that tallies produced by Tally corresponds to the choices input
to Vote:

Definition 1 (Correctness). There exists a negligible function
W, such that for all security parameters k, integers np and
ne, and choices P1,...,0n, € {1,...,nc}, it holds that
if Y is a vector of length nc whose components are all 0, then

Pr[(PK 1, SK T, mp, m¢) < Setup(k);
for 1 <i<npgdo
L b; < Vote(PK 7,n¢, Bi, k);
Y[3i] < Y[Bi] + 15
BB+ {b1,... buy };
(X, P) + Tally(PK+, SK 1, BB, nc, k) -
ng <mpAnc <mec=X=Y]>1-—puk).

Note that Correctness does not involve an adversary. Correct-
ness therefore stipulates that, under ideal conditions, an elec-
tion scheme does indeed produce the correct tally. Correctness
is not actually necessary to achieve verifiability: our definition
of universal verifiability will ensure that, in the presence of
an adversary, Verify detects any errors in the tally. But it is
reasonable to rule out election schemes that simply do not
work properly under ideal conditions.

7Bulletin boards have also been modeled as public broadcast channels [43],
[101]], [103]]. We abstract from the details of channels by employing sets to
represent the data sent on them. We favor sets over multisets, because Cortier
and Smyth [39], [40] demonstrate attacks against privacy when the bulletin
board is modeled as a multiset.

8Let X[i] denote component 4 of vector X.
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Election schemes must also satisfy Completeness, which
stipulates that tallies produced by Tally will actually be
accepted by Verify:

Definition 2 (Completeness). There exists a negligible func-
tion i, such that for all security parameters k, bulletin boards
BB, and integers nc, it holds that

Pr[(PK 7, SK 1, mp, m¢c) < Setup(k);
(X, P) « Tally(PK, SK 7, BB,nc, k) :
|BB| < mp Ang < me =
Verify(PK 7, BB,n¢, X, P k) = 1] > 1 — u(k).

Without Completeness, election schemes might be vulnerable
to biasing attacks, as we show in Section [VI-B

Finally, election schemes must satisfy Injectivity, which
asserts that a ballot cannot be interpreted as a vote for more
than one candidate:

Definition 3 (Injectivity). For all security parameters k, public
keys PK 1, integers ne, and choices 3 and [3', such that 3 #
B, we have

Pr[b + Vote(PK r,n¢, B3, k);
b < Vote(PK 1,n¢c, B, k) :
b LAY #L=b£l] =1

Injectivity ensures that distinct choices are not mapped by
Vote to the same ballot. Without Injectivity, an election
scheme might produce ballots whose meaning is ambiguous.
For example, if Vote(PK 7, nc, 3, k;r) were defined to be
B + r, then a ballot b could be tallied as any well-formed
choice 3’ such that 3’ = b—1r’ for some r’. But that definition
of Vote is prohibited by Injectivity. Thus, Injectivity helps
to ensure that the choices used to construct ballots can be
uniquely tallied.

Limitations: Our model of election schemes is sufficient
to analyze Helios and, after we extend the model to handle
internal authentication in Section JCJ. These are notable
schemes, and formally analyzing their verifiability is a novel
contribution. But there are other notable schemes that fall
outside our model:

o Pret & Voter [31]], MarkPledge [97], Scantegrity II [28]],
and Remotegrity [[111] all rely on features implemented
with paper, such as scratch-off surfaces and detachable
columns.

o Everlasting privacy [95]], which requires Vote to output
a public ballot and a secret proof, involving temporal
information, to the voter.

e Scytl’s Pnyx.core ODBP 1.0 [34], which requires the
bulletin board to be divided into two parts: a public part
visible to all participants, and a secret part visible only
to election administrators.

We leave extension of our model to other election schemes as
future work.

B. Election verifiability

Election verifiability comprises three aspects: individual,
universal, and eligibility verifiability. We express each as an
experiment, which is an algorithm that outputs O or 1. The
adversary wins an experiment by causing it to output 1.

1) Individual verifiability: In our model of election
schemes, all recorded ballots are posted on the bulletin board.
So for a voter to verify that their ballot has been recorded, it
suffices to enable them to uniquely identify their ballot on the
bulletin board )

Individual verifiability experiment Exp-IV-Ext(II, A, k),
where II denotes an election scheme, A denotes the adversary,
and k denotes a security parameter, therefore challenges A to
generate a scenario in which the voter cannot uniquely identify
their ballot. In essence, Exp-IV-Ext challenges A to generate
a collision from Vote If A cannot win, then voters can
uniquely identify their ballots on the bulletin board:

Exp-IV-Ext(II, A, k) =

1 (PKTanaﬂ7ﬁ/) « A(k)’

2 b+ Vote(PKr,n¢, B8, k);

3 b + Vote(PKr,nc, B, k);

4if b=V Ab# LAV # L then
s | return 1

6 else

7 | return 0

Line 1 asks A to compute two candidate choices 3 and (5,
such that ballots b and b’ for those choices, as computed by
Vote in lines 2 and 3, are equal. Individual verifiability thus
resembles Injectivity, but individual verifiability allows choices
to be equal and allows A to choose election parameters.

One way to achieve individual verifiability is to base the
election scheme on a probabilistic encryption scheme, such as
El Gamal [51]. Intuitively, if Vote encrypts the choice using
random coins, then it is overwhelmingly unlikely that two
votes will result in the same ballot. Our proofs that Helios
and JCJ satisfy individual verifiability are based on this idea.

Clash attacks: In a clash attack [93], the adversary
convinces some voters that a single ballot belongs to them
all. Some clash attacks are possible because of vulnerabilities
in the design of Vote. For example, if Vote simply outputs
candidate choice (3, then a voter has no way to distinguish
their vote for 8 from another voter’s vote for 3. Exp-1V-Ext
detects clash attacks resulting from vulnerabilities in Vote.

Some clash attacks, however, are possible because the
adversary subverts the implementation of Vote. For example,
the adversary might replace some hardware or software, or
compromise the random number generator. If any one of
these aspects is compromised, then Vote has effectively been
changed to a different algorithm Vote’. The conclusions drawn

9Section addresses the complementary issue of whether a recorded
ballot corresponds to the candidate choice a voter intended to make.

10Exp-IV-Ext can be equivalently formulated as an experiment that chal-
lenges A to predict the output of Vote. See Appendix [B| for details.



by a security analyst who uses our definition of individual ver-
ifiability to analyze Vote would not necessarily be applicable
to Vote'.

In short, a voter can verify that their ballot has been recorded
if and only if they run the correct Vote algorithm. We make
no guarantees to voters that do not run the correct Vote
algorithm. One way to make stronger guarantees is to use cut-
and-choose protocols to audit ballots [13]], [[14]. This would
require modeling voting as an interactive protocol with the
adversary, rather than as an algorithm. We leave this extension
as future work.

2) Universal verifiability: For an election to be universally
verifiable, anyone must be able to check that a tally is correct
with respect to recorded ballots—that is, the tally represents
the choices used to construct the recorded ballots. Because
anyone can execute Verify, it suffices that Verify accepts only
when that property holds.

Universal verifiability experiment Exp-UV-Ext(II, A, k)
therefore challenges adversary A to concoct a scenario in
which Verify incorrectly accepts:

Exp-UV-Ext(II, A, k) =

1 (PK+,BB,nc, X, P) « A(k);

2 Y « correct-tally(PK 7, BB, n¢, k);

3 if X £ Y A Verify(PK 1, BB, nc, X, P,k) = 1 then
4 | return 1

5 else

6 | return 0

In line 1, A is challenged to create a bulletin board BB and
purported tally X of that bulletin board. Line 2 constructs
the correct tally Y of BB, and line 3 checks whether Verify
accepts an incorrect tally. If A cannot win Exp-UV-Ext, then
Verify will not accept incorrect tallies. In particular, no ballots
can be omitted from the tally, and at most one candidate choice
can be included in the tally for each ballot.

Let function correct-tally be defined such that for all PK
BB, ne, k, £, and B € {1, R ,nc},

correct-tally(PK 7, BB,n¢, k)[B] = £
«— I e (BB\{Ll}):
Jr : b = Vote(PKr,nc, B, k;r).

The vector produced by correct-tally must be of length
ne. Component 5 of vector correct-tally(PK 1, BB,nc, k)
equals /¢ iff there exis{'] ¢ ballots on the bulletin board
that are votes for candidate (5. It follows that the output
of correct-tally represents the choices used to construct the
recorded ballots. Note that, without Injectivity, the existential
quantification in correct-tally could permit a ballot to be
tallied for more than one candidate. Of course, correct-tally
cannot be computed by a PPT algorithm for typical crypto-
graphic election schemes. But that does not matter, because

'The definition of correct-tally employs a counting quantifier [[105]
denoted 3=. Predicate (3=%x : P(x)) holds exactly when there are £ distinct
values for x such that P(x) is satisfied. Variable x is bound by the quantifier,
whereas £ is free.

correct-tally is never actually computed as part of an election
scheme—its use is solely in the definition of Exp-UV-Ext[?]

Security analysts must convince themselves that
correct-tally is indeed correct. Because of the function’s
simplicity, this should be relatively straightforward. By
comparison, Tally algorithms for real voting schemes tend
to be complicated. For example, compare the complexity of
correct-tally to Helios’s Tally algorithm, which appears in
Figure [T] of Appendix

By design, Exp-UV-Ext assumes that the ballots on bulletin
board BB are exactly the ballots that should be tallied.
The external authentication mechanism is assumed to prohibit
unauthorized ballots from being posted on BB. Helios makes
such an assumption about its external authentication mecha-
nism.

3) Eligibility verifiability: For an election to satisfy eligi-
bility verifiability, anyone must be able to check that every
tallied vote was cast by an authorized voter—that is, it must
be possible to authenticate ballots. In election schemes with
external authentication, a trusted third party authenticates
ballots. That third party might convince itself that all tallied
ballots have been authenticated, but it cannot convince all other
parties. Eligibility verifiability, therefore, is not achievable in
election schemes with external authentication.

4) Election  verifiability: With  Exp-IV-Ext  and
Exp-UV-Ext, we define election verifiability with external
authentication. Let a PPT adversary’s success Succ(Exp(-))
in an experiment Exp(-) be the probability that the adversary
wins—that is, Succ(Exp(+)) = Pr[Exp(-) = 1].

Definition 4 (Ver-Ext). An election scheme 11 satisfies elec-
tion verifiability with external authentication (Ver-Ext) if for
all PPT adversaries A, there exists a negligible function
W, such that for all security parameters k, it holds that
Succ(Exp-IV-Ext(II, A, k)) + Succ(Exp-UV-Ext(II, A, k)) <
pu(k).

An election scheme satisfies individual verifiability if
Succ(Exp-IV-Ext(I1, A, k)) < u(k), and similarly for univer-
sal verifiability.

C. Example—Toy scheme from nonces

A toy election scheme satisfying Ver-Ext can be based on
nonces. Each voter publishes a nonce paired with her choice
of candidate to the bulletin board. This scheme illustrates the
essence of election verifiability, even though it does not offer
any privacy.

Definition 5. Election scheme Nonce is defined as follows:

o Setup(k) outputs (L, L,pi(k),p2(k)), where p1 and p,
may be any polynomial functions.

o Vote(PKr,nc, 8,k) selects a nonce r uniformly at
random from Zox and outputs (v, [3).

2Kiayias et al. [83] use a similar super-polynomial vote extractor to recover
choices from ballots in an experiment defining verifiability.



e Tally(PKy,SKy,BB,nc,k) computes a vector X of
length nc, such that X is a tally of the votes on BB for
which the nonce is in Zox, and outputs (X, L1).

o Verify(PKy, BB,n¢, X, P, k) outputs 1 if (X,P) =
Tally(L, L, BB,nc, k) and 0 otherwise.

Proposition 1. Nonce satisfies Ver-Ext.

Proof sketch. Nonce satisfies individual verifiability, because
voters can use their nonce to check that their own ballot
appears on the bulletin board. With overwhelming probability,
Vote will select unique nonces for each voter, hence generate
distinct ballots. Nonce also satisfies universal verifiability,
because plaintext candidate choices are posted on the bulletin
board. O

D. Orthogonality

Exp-IV-Ext and Exp-UV-Ext capture orthogonal security
properties. A scheme that satisfies individual verifiability but
violates universal verifiability can be constructed from Nonce
by modifying Verify to always output 1. Voters can still check
that their own ballot appears. But an adversary can easily win
Exp-UV-Ext, because Verify will accept any tally. A scheme
that satisfies universal verifiability but violates individual
verifiability can be constructed from Nonce by removing the
nonces, leaving just the voter’s choice in the ballots. Call
that scheme Choice. Anyone can still verify the tally of the
election, but an adversary can easily win Exp-IV-Ext, because
two votes for the same candidate will collide.

III. CASE STUDY: HELIOS

Helios is an open-source, web-based electronic voting sys-
temE] Helios has been deployed in the real-world: the Interna-
tional Association of Cryptologic Research (IACR) has used
Helios annually since 2010 to elect board members [16], [65],
[72], the Catholic University of Louvain used Helios to elect
the university president [5]], and Princeton University has used
Helios to elect several student governments [3]], [99].

Attacks have been discovered against the original Helios
scheme, and defenses against those attacks have been pro-
posed [[19]], [20], [39]], [40]. For clarity, we write Helios 2.0
to refer to the Helios scheme as originally proposed [S] and
Helios 4.0 to refer to a version of Helios that incorporates
the defenses When referring in general to both of these
schemes, we simply write Helios.

To achieve verifiability while maintaining ballot se-
crecy (18], [20], Helios homomorphically encrypts candidate
choices. During tallying, all encrypted choices are homomor-
phically combine into a single ciphertext, which is then

Bhttps://vote.heliosvoting.org/

14Our analysis of Helios 4.0 is based on the specification [4] for the next
release. This specification incorporates proposals by Cortier and Smyth [40]
for non-malleable ballots and by Bernhard et al. [20] to replace the weak
Fiat—Shamir transformation with the strong Fiat—Shamir transformation.

15The homomorphic combination of ciphertexts is straightforward for two-
candidate elections [12], [[17], [36], [69], [[102], since choices (e.g., “yes”
or “no”) can be encoded as 1 or 0. Multi-candidate elections are also
possible [17], [47], [68].

decrypted to reveal the tally. Informally, Helios works as
follows:

o Setup. The tallier generates a key pair for a homomorphic
encryption scheme and publishes the public key.

o Voting. A voter encrypts her candidate choice with the
tallier’s public key, and she proves in zero knowledge that
the ciphertext contains a well-formed choice. The voter
posts her ballot (i.e., ciphertext and proof) on the bulletin
board. During posting, the bulletin board is assumed to
correctly authenticate voters.

« Tallying. The tallier discards any ballots from the bulletin
board for which proofs do not hold. The tallier homomor-
phically combines the ciphertexts in the remaining bal-
lots, decrypts the homomorphic combination, and proves
in zero knowledge that decryption was performed cor-
rectly. Finally, the tallier publishes the winning candidate
and proof of correct decryption.

o Verification. A verifier recomputes the homomorphic
combination and checks all the zero-knowledge proofs.

We give a formal description of Helios 4.0 in Appendix |Cl°]
Using that formalization, we can prove that Helios 4.0 is
verifiable:

Theorem 2. Helios 4.0 satisfies Ver-Ext.

Proof sketch. Helios 4.0 satisfies individual verifiability, be-
cause the probabilistic encryption scheme ensures that ballots
are unique, with overwhelming probability. And Helios 4.0
satisfies universal verifiability, because the zero-knowledge
proofs can be publicly verified. O

A formal proof of Theorem [2] appears in Appendix [D] The
proof assumes the random oracle model [9].

We would not expect Ver-Ext to hold for Helios 2.0, because
of known attacks [20]. Accordingly, we prove that Helios 2.0
does not satisfy Ver-Ext in Appendix [E]

IV. INTERNAL AUTHENTICATION

Some election schemes implement their own authentication
mechanisms. JCJ [[77]-[79] and Civitas [35], for example,
authenticate ballots based on credentials issued to voters by
a registration authority. Schemes with this kind of internal
authentication enable verification of whether tallied ballots
were cast by authorized voters.

A. Election scheme

A registrar is responsible for issuing authentication creden-
tials to votersF_TI Each voter is associated with a credential pair
(pk, sk). The voter uses private credential sk to construct
a ballot. Public credential pk is used during tallying and
verification. Let L denote the electoral roll, which is the set
of all public credentials.

160ur formalization is the first cryptographic description of Helios 4.0,
hence an additional contribution of this work.

7Some election schemes (e.g., JCJ) permit the registrar’s role to be
distributed among several registrars. For simplicity, we consider only a single
registrar in this paper.


https://vote.heliosvoting.org/

An election scheme with internal authentication, which
henceforth in this section we abbreviate as “election scheme,”
is a tuple (Setup, Register, Vote, Tally, Verify) of PPT algo-
rithms. The algorithms are now denoted as follows:

o (PK1,SK1,mp, m¢) < Setup(k)

o (pk, sk) < Register(PK 1, k)

o b+ Vote(sk, PK+,nc, B, kj)

e (X,P)« Tally(PK+,SK,BB,L,nc,k)

e v« Verify(PKy,BB,L,n¢,X, P, k)
Setup is unchanged from election schemes with external
authentication (cf. §lI-A). The only change to Vote is that it
now accepts private credential sk as input. Similarly, the only
change to Tally and Verify is that they now accept electoral
roll L as input. Register is executed by the registrar. It takes as
input the public key PK 7 of the tallier and security parameter
k, and it outputs a credential pair (pk, sk). After all voters
have been registered, the registrar certifies the electoral roll,
perhaps by digitally signing and publishing it

Election schemes must continue to satisfy Correctness,
Completeness, and Injectivity, which we update to include
private credentials and the electoral roll:

Definition 6 (Correctness). There exists a negligible function
u, such that for all security parameters k, integers np and
ne, and choices B1,...,0n, € {1,...,nc}, it holds that
if Y is a vector of length nc whose components are all 0, then

PI‘[(PKT, SK,mpg, mc) — Setup(k);
for 1 <i<npgdo
(pk;, sk;) < Register(PK 1,k);
b; + Vote(sk;, PK1,n¢c, B, k);
Y[Bi] < Y[Bi] + 1
L+ {pklv ce >pkn5};
BB + {b1,...,bn 1
(X, P) « Tally(PK+, SK 7, BB, L,nc, k) :
ng <mpAnc <mec=X=Y]>1-puk).

Definition 7 (Completeness). There exists a negligible func-
tion u, such that for all security parameters k, bulletin boards
BB, and integers nc and ny, it holds that

Pr[(PK 7, SK 7, mp, m¢c) < Setup(k);
for 1 <i < ny do (pk;, sk;) < Register(PK 1, k);
L« {pky,...,pk, };
(X, P) < Tally(PK 7, SK 7, BB, L,nc, k) :
|BB| < mp Ang < mg =
Verify(PK 7, BB, L,inc, X, P,k) = 1] > 1 — u(k).

Definition 8 (Injectivity). For all security parameters k, public
keys PK 1, integers nc, and choices 8 and (3', such that 3 #

18]t might seem surprising that Register does not require the registrar to
provide any private keys as input. But in constructions of election schemes
with internal authentication, e.g., [35], [79], the registrar does not sign
credential pairs with its own private key. Rather, the registrar signs the
electoral roll.

B, we have
Pr[(pk, sk) + Register(PK 7, k);
(pk', sk) « Register(PK 1, k);
b < Vote(sk, PK1,nc, B, k);
b « Vote(sk', PKr+,nc, 8, k) :
b# LAV # 1L =b#V]=1.
B. Election verifiability

Recall (from that election verifiability is expressed
with experiments, and that an adversary wins by causing an
experiment to output 1. We henceforth assume that the adver-
sary is stateful—that is, information persists across invocations
of the adversary in a single experiment. Our experiments in
Section |lI| did not need this assumption, because they never
invoked the adversary more than once.

In our experiments, below, we model an adversary who
cannot corrupt the registration process that issues credentials
to voters[’] Hence our definitions will not detect attacks
against verifiability that result solely from weaknesses in the
registration process. Secure construction of electoral rolls is
not a topic that electronic voting usually addresses—though it
seems an important part of any real-world deployment.

1) Individual verifiability: The individual verifiability ex-
periment again challenges adversary A to generate a scenario
in which the voter could not uniquely identify their ballotET]

Exp-IV-Int(I1, A, k) =

1 (PKT,ny) < A(k);

2 for 1 <i<ny do (pk;, sk;) < Register(PK 1, k)

3 L {pky,....0k, };

4 Crpt < 0;

5 (ne, B, B',i,7) < A°(L);

6 b« Vote(sk;, PK1,nc,(,k);

7 V' < Vote(sk;, PK1,nc, (', k);

8 if
b=bAb# LAY # LAi# jAsk; & CrptAsk; & Crpt
then

9 | return 1

10 else

1 | return 0

The main differences from the corresponding experiment for
external authentication (§II-BI]) are that voters are registered in
line 2, and that A is given access to an oracle C in line 5. The
oracle is used to model .4 corrupting voters and learning their
private credentials: on invocation C'(¢), where 1 < £ < ny,
the oracle records that voter ¢ is corrupted by updating Crpt
to be CrptU{sk,} and outputs sky. In line 5, the voter indices
output by .4 must be legal with respect to ny, but we elide
that detail from the experiment for simplicity. Line 8 ensures
that A cannot trivially win by corrupting voters.

Kiisters and Truderung [89] explore some consequences of permitting
adversarial influence during registration.

20Unlike Exp-IV-Ext, a variant of Exp-IV-Int that challenges A to predict
the output of Vote is strictly stronger. See Appendix [B| for details.



2) Universal verifiability: The universal verifiability exper-
iment again challenges A to concoct a scenario in which Verify
incorrectly accepts:

Exp-UV-Int(I1, A, k) =

1 (PKT,TL\/) — A(k),

2 for 1 <i < ny do (pk,, sk;) + Register(PK 7, k)
3 L {pky,....0k, };

4 M < {(pky,5k1), ..., (Pkpy,, Skny )}

5 (BB,n¢, X, P) + A(M);

6 Y « correct-tally(PK v, BB, M,n¢, k);

7 if X # Y A Verify(PK+, BB, L,nc, X, P,k) = 1 then
8 | return I

9 else

10 | return 0

The main differences from the corresponding experiment for
external authentication (§II-B2)) are that voters are registered
in line 2, and their credential pairs are used in the rest of the
experiment.

Function correct-tally is now modified to tally only autho-
rized ballots. A ballot is authorized if it is constructed with a
private credential from M, and that private credential was not
used to construct any other ballot on BB. By comparison, the
original correct-tally function (§II-B2) tallies all the ballots
on BB.

Formally, let function correct-tally now be defined such
that for all PK+, BB, M, n¢, k, ¢, and 8 € {1,...,nc},

correct-tally(PK 7, BB, M,nc, k)[B8] = ¢
= 3% € authorized(PK 1, (BB \ {L}), M,n¢, k) :
dsk,r : b = Vote(sk, PK ,nc, B, k;r).

Let authorized be defined as follows:

authorized(PK 7, BB, M,n¢c, k) =
(b: be BB
A Jpk, sk, B,r : b = Vote(sk, PK,nc, 8, k;r)
A (pk,sk) € M ATV, 3,1 : b € (BB\ {b})
A b = Vote(sk, PKr,nc, ', k;r')}.

Function authorized discards all revotes—that is, if there is
more than one ballot submitted with a private credential sk,
then all ballots submitted under that credential are discarded.
Therefore, election schemes that permit revoting cannot by
analyzed with this definition of authorized. But alternative
definitions of authorized are possible—for example, if ballots
were timestamped, authorized could discard all but the most
recent ballot submitted under a particular credential.

3) Eligibility verifiability: Recall (from that for
an election scheme to satisfy eligibility verifiability, anyone
must be able to check that every tallied vote was cast by an
authorized voter—that is, it must be possible to authenticate
ballots. Because voters are issued credential pairs that can
be used to authenticate ballots, it suffices to ensure that
knowledge of a private credential is necessary to construct
an authentic ballot.

Eligibility verifiability experiment Exp-EV-Int therefore
challenges A to produce a ballot under a private credential
that A does not know:

Exp-EV-Int(I1, A, k)

1 (PKT,nV) — A(k)’

2 for 1 <i < ny do (pk,, sk;) + Register(PKr,k);

3 L {pky,....0k, };

4 Crpt < (; Rvld + 0;

5 (nc, B,i,b) + ASE(L);

6 if Ir : b = Vote(sk;, PK1,nc, B, k;r) Nb#£ LAbE
Rold A sk; ¢ Crpt then

7 | return 1

8 else

9 | return 0

In line 1, A chooses the tallier’s public key and the number of
voters. Line 2 registers voters. A is not permitted to influence
registration while it is in progress. In particular, A is not
permitted to choose credential pairs, because by doing so A
could trivially win the experiment.

Line 4 initializes two sets: Crpt is a set of voters who
have been corrupted, meaning that A has learned their private
credential, and Rvld is a set of ballots that have been revealed
to A. The former set models .4 coercing voters to reveal their
private credentials. The latter set models A observing ballots
on the bulletin board.

Line 5 challenges A to produce a ballot b with the help
of two oracles. Oracle C' is the same oracle as in Exp-IV-Int
(cf. §IV-BI); it leaks the private credentials of corrupted voters
to A. Oracle R reveals ballots. On invocation R(i,3,n¢),
where 1 < i < ny, oracle R does the following:

o Computes a ballot b that represents a vote for candidate
5 by a voter with private credential sk;, that is, computes
b« Vote(ski, PKr,ne, 3, k‘)

e Records b as being revealed by updating Rwld to be
Ruld U {b}.

o Outputs b.

In line 6, A wins if (i) the ballot is authentic, meaning that
it is the output of Vote on an authorized credential, and (ii)
that credential belongs to a voter that .4 did not corrupt, and
(iii) that ballot was not revealed. If A cannot succeed in this
experiment, then only authorized votes are tallied.

4) Election verifiability: With Exp-1V-Int, Exp-UV-Int, and
Exp-EV-Int, we define election verifiability with internal au-
thentication.

Definition 9 (Ver-Int). An election scheme 11 satisfies elec-
tion verifiability with internal authentication (Ver-Int) if for
all PPT adversaries A, there exists a negligible function
W, such that for all security parameters k, it holds that
Succ(Exp-IV-Int(II, A, k)) + Succ(Exp-UV-Int(II, A, k)) +
Succ(Exp-EV-Int(I1, A, k)) < p(k).

An election scheme satisfies eligibility verifiability if
Succ(Exp-EV-Int(II, A, k)) < p(k), and similarly for indi-
vidual and universal verifiability.



C. Example—Toy schemes from digital signatures

A toy election scheme satisfying Ver-Int can be based
on a digital signature scheme (Gen,Sign,Ver)@ Each voter
publishes their signed candidate choice on the bulletin board.

Definition 10. Election scheme Sig is defined as follows:

o Setup(k) outputs (L, L,p1(k),p2(k)), where p1 and py
may be any polynomial functions.

o Register(PK 1, k) computes (pk,sk) + Gen(1%) and
outputs (pk, sk).

o Vote(sk, PK1,nc, 8, k) outputs (8, Sign(sk, 3)).

e Tally(PKy,SKy,BB,L,nc,k) computes a vector X
of length nc, such that X is a tally of all the ballots
on BB that are signed by distinct private keys whose
corresponding public keys appear in L, and outputs
(X, L).

o Verify(PK7,BB,L,nc,X, P, k) outputs 1 if (X,P) =
Tally(L, L, BB, L,n¢, L) and 0 otherwise.

The verifiability of Sig follows from the security of the
underlying signature scheme:

Proposition 3. If (Gen,Sign,Ver) is a signature scheme
satisfying existential unforgeablility under adaptive chosen-
message attack,@ then Sig satisfies Ver-Int.

Proof sketch. Sig satisfies individual verifiability, because vot-
ers can verify that their signed choices appear on the bulletin
board. Sig satisfies universal verifiability, because signed plain-
text choices are posted on BB. Finally, Sig satisfies eligibility
verifiability, because anyone can check that the signed choices
belong to registered voters. O

D. Orthogonality

Exp-IV-Int, Exp-UV-Int, and Exp-EV-Int capture mostly
orthogonal security properties, as shown in Table |I} Individ-
ual and universal verifiability are orthogonal, and eligibility
verifiability implies individual verifiability.

Theorem 4. If an election scheme 11 satisfies Exp-EV-Int,
then 11 also satisfies Exp-I1V-Int.

Proof sketch. If 11 satisfies Exp-EV-Int, then no one can
construct a ballot that appears to be associated with public
credential pk unless they know private credential sk. That
means that a voter can uniquely identify their ballot, because
no one else knows their private credential. Therefore I satis-
fies Exp-1V-Int. [

The proof of Theorem [ appears in Appendix [/

In Table [II AlwaysVerify(:) is a function that transforms
an election scheme by compromising Verify to always re-
turn 1. Thus, AlwaysVerify(IT) is guaranteed not to satisfy
Exp-UV-Int. Similarly, IgnoreCreds(-) is a function that ac-
cepts as input an election scheme with external authentication
and returns as output an election scheme with internal au-
thentication. The resulting scheme, however, simply ignores

2IDigital signature schemes are defined in Appendix E]
22This security property is defined in Appendix

Line | IV UV EV | Scheme
1 X X X | AlwaysVerify(IgnoreCreds(Choice))
2 X X | —
3 X v X | lgnoreCreds(Choice)
4 X v | —
5 4 X X | AlwaysVerify(lgnoreCreds(Nonce))
6 v X v | AlwaysVerify(Sig)
7 v v X Malleable Sig
8 v v v | Sig
TABLE I

ELECTION SCHEMES THAT SATISFY EACH COMBINATION OF INDIVIDUAL,
UNIVERSAL AND ELIGIBILITY VERIFIABILITY

credentials altogether: Register returns (L, 1), Vote ignores
sk, and Tally and Verify ignore L. Thus, IgnoreCreds(II) is
guaranteed not to satisfy Exp-EV-Int. Using those functions,
we briefly explain each line of the table:

1) Recall (from that Choice is the election scheme in
which ballots contain only the plaintext candidate choice.
By compromising Verify and ignoring credentials, we
obtain a scheme that satisfies no properties.

2) By Theorem [} this situation is impossible.

3) Compared to line 1 of Table [Il this scheme satisfies
Exp-UV-Int, because Verify is not compromised.

4) By Theorem [] this situation is impossible.

5) Nonce satisfies Exp-IV-Ext and Exp-UV-Ext. Moreover,
IgnoreCreds(Nonce) satisfies Exp-1V-Int and Exp-UV-Int.
By compromising Verify, we obtain a scheme that satis-
fies only Exp-IV-Int.

6) Sig satisfies all three properties. By compromising Verify,
we obtain a scheme that satisfies only Exp-lIV-Int and
Exp-EV-Int.

7) By making Sig’s underlying signature scheme mal-
leableE] we could obtain a scheme that does not satisfy
Exp-EV-Int, because the adversary could construct a valid
ballot out of a revealed ballot. But the scheme would
continue to satisfy Exp-IV-Int and Exp-UV-Int.

8) Sig satisfies all three properties.

V. CASE STtUDY: JCJ

JCJ (named for its designers, Juels, Catalano, and Jakobs-
son) [77]-[79] is a coercion-resistant election scheme, mean-
ing voters cannot prove whether or how they voted, even if
they can interact with the adversary while voting. Coercion
resistance protects elections from improper influence by ad-
versaries.

To achieve verifiability and coercion resistance, JCJ uses
verifiable mixnets, which anonymize a set of messagesFE]
During tallying, all encrypted choices are anonymized by a
mixnet, then all choices are decrypted. The tally is computed
from the decrypted choices. Informally, JCJ works as follows:

BGiven a message m and signature o, a malleable signature scheme
permits computation of a signature ¢’ on a related message m’ [25]. The
malleable signature scheme Sig used in line 7 of Table [I] would need to
enable an adversary to transform a signature on a well-formed candidate 8
into a signature on a distinct, well-formed candidate 3’.

24Chaum [26]] introduced mixnets. Adida [|1] surveys verifiable mixnets.



« Setup. The tallier generates a key pair (PK 7, SK ) for
an encryption scheme and publishes the public key.

« Registration. To register a voter, the registrar generates
a nonce, which is sent to the voter and serves as the
private credential. The public credential is computed as an
encryption of the private credential with PK . After all
voters are registered, the registrar publishes the electoral
roll.

« Voting. A voter encrypts her candidate choice with PK .
She also encrypts her private credential with PK 7. She
proves in zero-knowledge that she simultaneously knows
both plaintexts, and that her choice is well-formed. The
voter posts her ballot (i.e., both ciphertexts and the proof)
on the bulletin board.

o Tallying. The tallier discards any ballots from the bulletin
board for which the zero-knowledge proofs do not verify.
All unauthorized ballots are then discarded through a
combination of protocols that includes verifiable mixnets
and plaintext equivalence tests (PETs) [74]. (PETs enable
proof that two ciphertexts contain the same plaintext
without revealing that plaintext.) The tallier decrypts and
publishes the remaining ballots, along with a proof that
decryption was performed correctly.

« Verification. A verifier checks all the proofs included in
ballots, and all the proofs published during tallying.

Appendix [G] gives a formal description of JCJ. That formal-
ization satisfies individual and universal verifiability, assuming
that the cryptographic primitives satisfy certain properties that
we identify. But the formalization fails to satisfy eligibility
verifiability, because knowledge of the tallier’s private key
SK 7 suffices to construct ballots that appear authentic: with
SK 1, any public credential can be decrypted to discover the
corresponding private credential. Note that Exp-EV-Int permits
an adversary A to choose the tallier’s key pair, so A does
know SK 7 hence can construct a ballot that suffices to win
Exp-EV-Int.

We can nonetheless prove that JCJ satisfies a variant of
eligibility verifiability. Consider the following experiment,
which does not permit the adversary to choose the tallier’s
key pair:

Exp-EV-Int-Weak(II, A, k) =

1 (PK+,SK 1, mp, m¢c) < Setup(k);

ny < A(PKT,k);

for 1 <i < ny do (pk;, sk;) + Register(PK 1, k);
L {pky,...,pky, }:

Crpt + 0; Rold + 0;

(nc, B,i,b) + ASE(L);

if 3r : b = Vote(sk;, PK+,nc, B, k;r) ANb# LAbE
Rold A sk; ¢ Crpt then

8 | return 1

9 else

10 | return 0

N S R W

Line 1 of Exp-EV-Int has been refactored into lines 1 and 2
of Exp-EV-Int-Weak. In line 1 of Exp-EV-Int-Weak, keys are
generated by the experiment. In line 2, A is given the public

key but not the private key.
Using Exp-EV-Int-Weak, we define a weaker variant of
Ver-Int and prove that JCJ satisfies it:

Definition 11 (Ver-Int-Weak). An election scheme 11 sat-
isfies weak election verifiability with internal authentication
(Ver-Int-Weak) if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function i, such that for all
security parameters k, we have Succ(Exp-IV-Int(II, A4, k)) +
Succ(Exp-UV-Int(I1, A, k)) + Succ(Exp-EV-Int-Weak(II, A,
k) < p(k).

Theorem 5. JCJ satisfies Ver-Int-Weak.

Proof sketch. JCJ satisfies individual verifiability, because
the probabilistic encryption scheme ensures that ballots are
unique, with overwhelming probability. JCJ satisfies universal
verifiability, because the proofs produced throughout tallying
can be publicly verified. And JCJ satisfies eligibility verifiabil-
ity, because .4 cannot construct new ballots without knowing
a voter’s private credential or the tallier’s private key. O

A formal proof of Theorem [5] appears in Appendix [Hl The
proof assumes the random oracle model.

The Civitas [35] scheme refines the JCJ scheme. Some
refinements relevant to election verifiability are an implemen-
tation of a distributed registration protocol, and a mixnet based
on randomized partial checking (RPC) [[75]]. We leave a proof
that Civitas satisfies Ver-Int-Weak as future work. In that
proof, it would be necessary to assume the RPC construction
satisfies the definition of mixnets given in Appendix
Work by Khazaei and Wikstrom [81] suggests that actually
proving satisfaction is unlikely to be possible. Alternatively,
the mixnet could be replaced by one based on zero-knowledge
proofs [54]], [96].

VI. NEW CLASSES OF ATTACK

Our definitions of election verifiability improve upon exist-
ing definitions by detecting two previously unidentified classes
of attack:

e Collusion attacks. An election scheme’s tallying and
verification algorithms might be designed such that they
collude to accept incorrect tallies.

e Biasing attacks. An election scheme’s verification al-
gorithm might be designed such that it rejects some
legitimate tallies.

Although a well-designed election scheme would hopefully
not exhibit these vulnerabilities, it is the job of verifiability
definitions to detect malicious schemes, regardless of whether
vulnerabilities are due to malice or errors. So definitions of
election verifiability should preclude collusion and biasing
attacks.

A. Collusion Attacks

Here are two examples of potential collusion attacks:

« Vote stuffing. Tally behaves normally, but adds x votes
for candidate (3. Verify subtracts s votes from [, then



proceeds with verification as normal. Elections thus verify
as normal, except that candidate [ receives extra votes.
Backdoor tally replacement. Tally and Verify behave
normally, unless a backdoor value is posted on the
bulletin board BB. For example, if (SK7,X*) appears
on BB, then Tally and Verify both ignore the correct
tally and instead replace it with tally X*. Value SK 7 is
the backdoor here; it cannot appear on BB (except with
negligible probability) unless the tallier is malicious.
Vote stuffing is detected by our definitions of Correctness
(§II-A] and §IV-A), because these definitions require that the
tally produced by Tally corresponds to the choices encapsu-
lated in ballots on the bulletin board. Note that vote stuffing
is not a failure of eligibility verifiability, because the stuffed
votes do not correspond to any ballots on the bulletin board.
Backdoor tally replacement is detected by our definitions
of universal verifiability (§II-B2] and §IV-B2), because those
definitions require Verify to accept only those tallies that
correspond to a correct tally of the bulletin board.

We show, next, that the definition of election verifiability
by Juels et al. [79] fails to detect vote stuffing and backdoor
tally replacement, and that the definition by Cortier et al. [38§]]
fails to detect backdoor tally replacement.

Juels et al. [79]] formalize definitions that we name JCJ-
correctness and JCJ-verifiability. JCJ-correctness is intuitively
meant to capture that “.A cannot pre-empt, alter, or cancel the
votes of honest voters [and] that A cannot cause voters to cast
ballots resulting in double voting” [[79, p. 45]; it is formalized
in terms of whether the adversary can post ballots on the
bulletin board that cause the tally to be computed incorrectly.
JCJ-verifiability is intuitively “the ability for any player to
check whether the tally...has been correctly computed” [79,
p- 46]; it is formalized in terms of whether Verify will accept
a tally that differs from the output of Tally. We restate the
formal definitions in Appendix [I|

To show that the JCJ definitions fail to detect collu-
sion attacks, we first formalize the vote stuffing attack. An
election scheme II = (..., Tally, Verify) can be modified
to derive a vote-stuffing election scheme Stuff(II, 3, k)
(..., Tallyg, Verifyg), which adds k votes to [3, as followsE]

o Tallyg(...) computes (X, P) + Tally(...) and outputs

(Add(X, 3, k), P) P
o Verifyg(..., X, P,...) computes v < Verify(...,Add(
X, 8,—k), P,...) and outputs v.

Proposition 6. Given an election scheme 11 satisfying JCJ-
correctness and JCJ-verifiability, and integers B and K, it
holds that Stuff(Il, 8, k) satisfies JCJ-correctness and JCJ-
verifiability.

A formal proof appears in Appendix [J|
Second, we formalize the backdoor tally replacement attack.
An election scheme II = (..., Tally, Verify) can be modified

25We omit many of the parameters of Tally and Verify here for simplicity;
see Appendix E] for details.

PLet Add(X, B, K) (X[1]1 ] X[ﬂ - 1}7X[6] + “:X[ﬁ +
1],..., X[|X]]). And let |X| denote the length of vector X.
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to derive an election scheme Backdoor(Il) = (..., Tallyp,
Verifyz), as follows:

e Tallyg(...,SKy, BB,...) checks whether there exists a
unique X* such that (SK1,X*) € BB. If so, Tallyg
outputs (X*, 1 ). Otherwise, Tally; computes (X, P)
Tally(...,SK+, BB,...) and outputs (X, P).

Verifyg(PK,...,BB,...,X,P,...) checks whether
there exists a unique X* such that (SK7,X*) € BB
If so, Verifyg outputs 1. Otherwise, Verifyp computes
v < Verify(PK7,...,BB,..., X, P,...) and outputs v.

Proposition 7. Given an election scheme 11 satisfying JCJ-
correctness and JCJ-verifiability that does not leak the tal-
lier’s private key, it holds that Backdoor(Il) satisfies JCJ-
correctness and JCJ-verifiability.

A formal proof appears in Appendix [J| where we also formally
define key leakage.

Cortier et al. [38] propose definitions similar to JCJ-
verifiability and insist that election schemes must satisfy their
notions of correctness and partial tallying. Vote stuffing is
detected by their correctness property, but backdoor tally
replacement is not. The ideas remain the same, so we omit
formalized results. We have reported these findings to the
original authors [37], [55], [56].

B. Biasing attacks

Here are three formalizations of biasing attacks, derived
from an election scheme IT = (..., Verify).

o Reject All. Let Reject(II) be (..., Verifyy), where
Verify, always outputs 0. Verifyp therefore always re-
jects, hence no election can ever be considered valid.
Selective  Reject. Let ¢ be a distinguished
value that would not be posted on the bulletin
board by honest voters. Let Selective(Il,e) be
(..., Verifyg), where Verifygz(...,BB,...) computes
v « Verify(...,BB,...) and outputs 1 if both v = 1
and ¢ ¢ BB. Otherwise, Verifyp outputs 0. Verifyp
therefore rejects if € appears on the bulletin board, hence
some elections can be invalidated.

Biased Reject. Suppose Z is a set of tallies. Let
Bias(II, Z) be (..., Verifyy), where Verifyp(...,X,...)
computes v < Verify(...,X,...) and outputs 1 if both
v =1and X € Z. Otherwise, Verify» outputs 0. Verify
therefore only accepts a subset of the tallies accepted by
Verify, hence biases tallies toward Z.

These formalizations do not satisfy our definition of Complete-
ness (§II-A] and §IV-A)), hence, our definitions of verifiability
detect these biasing attacks.

The definition of verifiability by Juels et al. [[79] fails to
detect all three of the above attacks, because that definition
has no notion of Completeness. For example, it is vulnerable
to Biased Reject attacks:

2TV erify i also needs to check that SK 7 is the private key corresponding
to PK 7. We omit formalizing this detail, but note that it is straightforward
for real-world encryption schemes such as El Gamal and RSA.



Proposition 8. Given an election scheme 11 satisfying JCJ-
correctness and JCJ-verifiability, and given a multiset Z,
it holds that Bias(Il, Z) satisfies JCJ-correctness and JCJ-
verifiability.

A formal proof appears in Appendix [J|

The definition of verifiability by Kiayias et al. [83] fails
to detect Selective Reject attacks, because (like JCJ) the
definition has no notion of Completeness. Their notion of
Correctness does rule out Reject All and Biased Reject attacks.

Similarly, the definition of verifiability by Cortier et al. [38§]]
detects Biased Reject and Reject All attacks, but fails to detect
Selective Reject attacks, because that definition’s notion of
Completeness does not quantify over all bulletin boards.

VII. RELATED WORK

Kiayias [82]] presents an overview of security properties
for election schemes. Many election schemes in the literature
state properties called correctness, accuracy, or (universal)
verifiability without formally defining those terms.

In the computational model, Juels et al. [77]-[79] and
Cortier et al. [38]] give game-based definitions of verifiability.
Those definitions fail to detect biasing and collusion attacks
(cf. §VI). Definitions of universal verifiability (which is just
one aspect of election verifiability) in the computational model
seem to originate with Benaloh and Tuinstra [15]], who define
a correctness property that says every participant is convinced
that the tally is accurate with respect to the votes cast, and
with Cohen and Fischer [36], who define verifiability to mean
that there exists a check function that returns good iff the
announced tally of the election corresponds to the cast votes.

Kiayias et al. [83] define a property they name E2F verifia-
bility (E2E abbreviates “end-to-end”). This property combines
our intuitive notions of individual and universal verifiability
into a single definition. Their definition fails to detect Selective
Reject attacks (cf. . Their definitions, like ours, do
not address voter intent—that is, verification by humans that
ballots correctly encode candidate choices—as we discuss in
Section [VIII

Also in the computational model, Groth [63], and Moran
and Naor [95]], state definitions of verifiability in terms of
universal composability [|23]]. These definitions involve defin-
ing an ideal functionality, part of that is similar to our
correct-tally function. Groth’s definition does not guaran-
tee universal verifiability [[63, p. 2], but Moran and Naor’s
does [95] p. 386].

In the symbolic model, Smyth et al. [109] define the first
definition of election verifiability. This definition is amenable
to automated reasoning, but is stronger than necessary and
cannot be satisfied by many election schemes, including Helios
and Civitas. Kremer et al. [85] overcome this limitation with
a weaker definition that sacrifices amenability to automated
reasoning, and Smyth [106, §3] extends this definition. Dreier
et al. have adapted election verifiability to auction [50] and
examination [49]] systems.

Also in the symbolic model, Kremer and Ryan [84] and
Backes et al. [7] formalize definitions of eligibility. These
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definitions are not intended to provide assurances if the
election authorities are dishonest. For example, the definition
of Kremer and Ryan does not detect whether corrupt election
authorities insert votes [84} §5.2]. Likewise, the definition of
Backes et al. assumes that election authorities are honest [7,
§3].

Our definition of election verifiability follows Smyth et
al. [85], [106], [109] by deconstructing it into individual,
universal, and eligibility verifiability. Other deconstructions of
election verifiability are possible. For example, Adida and Neff
[6L §2] identify four aspects of verifiability:

e Cast as intended: the ballot is cast at the polling station
as the voter intended.

e Recorded as cast: cast ballots are preserved with integrity
through the ballot collection process.

e Counted as recorded: recorded ballots are counted cor-
rectly.

o Eligible voter verification: only eligible voters can cast a
ballot in the first place.

Those definitions are not mathematical, so we cannot attempt
a precise comparison. Nonetheless, eligibility verifiability and
eligible voter verification seem to be addressing similar con-
cerns. Likewise, individual and universal verifiability together
seem to be addressing concerns similar to that of recorded
as cast and counted as recorded together. Recorded as cast, in
our work, reduces to the bulletin board preserving ballots with
integrity—a property that we have assumed, because crypto-
graphic election schemes assume it, too. Ways to construct
secure bulletin boards have been proposed, e.g., [45], [67],
[101]], [103[]. We postpone a discussion of cast as intended to
Section

Privacy properties [48], [79], [91]], [92], [107], [108]—such
as ballot secrecy, receipt freeness, and coercion resistance—
complement verifiability. Chevallier-Mames et al. [32], [33]
and Hosp and Vora [70], [71]] show an incompatibility result:
election schemes cannot unconditionally satisfy privacy and
universal verifiability. But weaker versions of these properties
can hold simultaneously, as can be witnessed from Theorems
and [5] coupled with existing privacy results such as the
ballot secrecy proofs for Helios 4.0 [20, Theorem 3], [18|
Theorem 6.12], and the coercion resistance proof for JCJ [79}
85].

Comparison with global verifiability: Kiisters et al. [90],
[[91]], [93]] present a definition of global verifiability that can
be used with any kind of protocol, not just electronic voting
protocols. To analyze the verifiability of a protocol, users of
this definition must themselves formalize goals, which are
properties required to hold in every run of the protocol. For
example, a goal v, is presented in a case study [91} §5.2] of
global verifiability applied to voting:

~¢ contains all runs for which there exist choices
of the dishonest voters (where a choice is either to
abstain or to vote for one of the candidates) such that
the result obtained together with the choices made by
the honest voters in this run differs only by ¢ votes



from the published result (i.e. the result that can be
computed from the simple ballots on the bulletin
board).

Another goal 7 is presented in a case study [93 §6.2] of
Helios:

~ is satisfied in a run if the published result exactly
reflects the actual votes of the honest voters in this
run and votes of dishonest voters are distributed in
some way on the candidates, possibly in a different
way than how the dishonest voters actually voted.

These informal statements of goals are appealing, but they
do not constitute rigorous mathematical definitions. As Kiayias
et al. write, “[global verifiability] has the disadvantage that the
set v remains undetermined and thus the level of verifiability
that is offered by the definition hinges on the proper definition
of v which may not be simple” [83, p. 476]. In our own
work, we found that formal definitions were quite tricky to get
right—for example, which ballots should be counted, how to
count them, and how to determine whether that count differed
from the published tally. So we shared [[87]] and discussed [|8]]
our results with Kiisters. In response, Kiisters et al. updated an
online technical report to propose a formalization of goals [86),
§5.2]; we look forward to analyzing that formalization when
it is published.

In an analysis of Helios, Kiisters et al. [93|] use goal
v to conclude that Helios 2.0 satisfies global verifiability.
Yet Bernhard et al. [20] demonstrate an attack against the
verifiability of Helios 2.0, and in Appendix [E| we show that
Helios 2.0 does not satisfy Ver-Ext. This seeming discrepancy
arises because the analysis in [93]] does not formalize all
the cryptographic primitives used by Helios, hence the attack
goes unnoticed. So another contribution of our own work is
to correctly distinguish between unverifiable and verifiable
variants of Helios by rigorously analyzing the cryptography
used in Helios.

It is natural to ask whether election verifiability can be
expressed in terms of global verifiability. We believe it can be.
For instance, individual, universal and eligibility verifiability
could be expressed, in the informal style of the goals quoted
above, as the following goals:

e 7rv is satisfied in a run if voters can uniquely identify
their ballots on the bulletin board in this run.

yyyv is satisfied in a run if the correct tally of votes cast
by authorized voters in this run is the same as the tally
produced by algorithm Tally.

vev is satisfied in a run if every ballot tallied in this
run was created by a voter in possession of a private
credential.

Kiisters et al. [91] argue that deconstructing verifiability
into individual and universal verifiability is insufficient to
detect certain attacks involving ill-formed ballots. But those
attacks leave open the possibility that there do exist notions of
individual and universal verifiability that would be sufficient.
Indeed, our own definition of universal verifiability rules out
attacks based on ill-formed ballots, because correct-tally
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ensures that tallied ballots are well-formed.

One concern that might be raised is whether there still
lurk any “gaps” in our decomposition into individual and
universal (and eligibility) verifiability. Indeed, there might be.
But the definition of global verifiability does not rule out the
possibility of gaps, either: any gap in the formal statement of a
goal will lead to a vulnerability. That is, if the analyst forgets to
include some necessary facet of verifiability when stating the
formal goal, then global verifiability will not detect any attacks
against that facet. Global verifiability does not guarantee a lack
of gaps.

VIII. CONCLUDING REMARKS

When we began this work, we were studying the Juels et
al. [[79] definition of election verifiability. We discovered that
the definition fails to detect biasing and collusion attacks.
While attempting to improve the Juels et al. definition to
rule out those attacks, we discovered that factoring it into
individual, universal, and eligibility verifiability led to an
elegant decomposition of (mostly) orthogonal properties. We
later sought to apply our new definitions to existing electronic
voting systems, and Helios [5] and Civitas [35] were natural
choices. But they treat authentication differently—Helios out-
sources authentication, whereas Civitas does not—so we were
led to separate our definitions into variants for external and
internal authentication. We were at first surprised to discover
that JCJ, hence Civitas, does not satisfy the strong definition of
eligibility verifiability. But upon reflection, it became apparent
that an adversary who knows the tallier’s private key can easily
forge ballots that appear to be from eligible voters.

Our definitions of verifiability have not addressed the issue
of voter intent—that is, verification by a human that the ballot
submitted by a voter corresponds to the candidate choice the
voter intended to make. Adida and Neff call this property
“cast as intended” [6]. Many election schemes (e.g., [S3],
[69], 1791, [83]]) do not satisfy cast as intended, because the
schemes implicitly or explicitly assume that voters can them-
selves verify the cryptographic operations required to construct
ballots. Nevertheless, schemes by Chaum [27]], Neff [97]], and
Benaloh [13]], [14] introduce cryptographic mechanisms to
verify voter intent. It would be natural to explore strengthening
our definitions to address voter intent.

The goal of this research is to enable verifiability of the
voting systems we use in real-life, rather than merely trusting
them. Research on verifiability can generalize beyond voting
to other systems that must guarantee strong forms of integrity.
Verifiable voting systems thus have the potential to contribute
to the science of security, to democracy, and to broader society.
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APPENDIX A
CRYPTOGRAPHIC PRIMITIVES

A. Basic definitions

Definition 12 (Negligible function [59]). A function p: N —
R is negligible if for every positive polynomial p(-), there exists
an N, such that for all n > N,

An event F(k), where k is a security parameter, occurs with
negligible probability if Pr[E (k)] < p(k) for some negligible
function p. The event occurs with overwhelming probability if
the complement of the event occurs with negligible probability.

Definition 13 (Asymmetric encryption scheme [80]). An
asymmetric encryption scheme is a tuple of PPT algorithms
(Gen, Enc, Dec) such that:

o Gen, denoted (pk,sk,m) < Gen(1%), takes a security
parameter 1% as input and outputs a key pair (pk, sk)
and message space m.

Enc, denoted ¢ < Enc(pk, m), takes a public key pk and
message m € m as input, and outputs a ciphertext c.
Dec, denoted m < Dec(pk, sk, c), takes a public key pk,
a private key sk, and ciphertext ¢ as input, and outputs
a message m or error symbol 1. We assume Dec is
deterministic.

Moreover, the scheme must be correct: there exists a neg-
ligible function p, such that for all security parameters k
and messages m, we have Pr[(pk,sk,m) + Gen(1%);c <«
Enc(pk,m) : m € m = Dec(pk, sk,c) =m] > 1 — u(k).

Our definition of asymmetric encryption schemes differs from
Katz and Lindell’s definition [80, Definition 10.1] in that we
formally state the plaintext space, and we provide the public
key as input to Dec. The latter is a technical convenience that
we use to handle parameters needed for encryption schemes.
For example, El Gamal is defined in terms of a cyclic group,
and a description of the group parameters is needed to compute
encryptions and decryptions. We assume those parameters are
encoded as part of the public key. Although we could also

28The dedication references Linda Ellis (1996) The Dash.
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assume the parameters are encoded in private keys, it suffices
to pass the public key into the decryption algorithm.

Definition 14 (Homomorphic encryption [80])). An asymmetric
encryption scheme I' = (Gen, Enc, Dec) is homomorphic if for
all k, pk, sk and w, such that (pk, sk, m) < Gen(1*), there
exist binary operators ®, @ and ®, and sets ¢ and ¢, such that
(m,®), (v,®) and (¢, ®) are groups and

e For all m and ¢, such that m € m and c < Enc(pk, m),
it holds that c € c.

For all mi,ms € mand ¢y, ¢y € ¢, such that Dec(pk, sk,
c¢1) = my and Dec(pk, sk,ca) = mo, there exists a
negligible function u, such that Pr[Dec(pk, sk,c1®c2) =
m1 @ ma] > 1 — pu(k).

For all mi,ms € m and r1,79 € t, there exists a
negligible function y, such that Pr[Enc(pk,mi;r1) ®
Enc(pk,ms;12) = Enc(pk,mi © ma;r @ 1ra)] > 1 —
(k).

The scheme T is additively homomorphic if © is the addition
operator in m; or, multiplicatively homomorphic if ® is the
multiplication operator in m.

Our definition of homomorphic encryption strengthens Katz
and Lindell’s definition [80, Definition 11.35] by adding the
third bullet point, which requires the homomorphism to extend
to random coins. That extension is needed in Helios as part of
the Vote algorithm, to enable proofs of plaintext knowledge
on homomorphic combinations of ciphertexts.

Indistinguishability ~ under  chosen-plaintext  attack
(IND-CPA) (8], [10], [L1], [60], [61] is a standard definition of
security for encryption schemes. Intuitively, if an encryption
scheme satisfies IND-CPA, then an adversary without access
to a decryption oracle is unable to distinguish ciphertexts.
A variant (IND-j-CPA) allows the adversary j adaptive
queries to a decryption oracle, where each query is a parallel
decryption query—i.e., it requests the decryption of a vector
of ciphertexts. Hence, IND-0-CPA is equivalent to IND-CPA.

Definition 15 (IND-j-CPA [21])). An asymmetric encryption
scheme T' = (Gen, Enc, Dec) satisfies IND-j-CPA if for all
stateful PPT adversaries A, there exists a negligible func-
tion u, such that for all security parameters k, we have
Succ(Exp-CPA(5, T, A, k)) < & + u(k), where j is a non-
negative integer and the experiment Exp-CPA is defined as

fOZZOW'

Exp-CPA(j, T, A, k) =

2Let x < S denote assignment to = of an element chosen uniformly at
random from set S.



1 (pk, sk,m) < Gen(1%);

2 (mo,mq) < A(pk,m);

3b<pg {0, 1};

4 ¢ < Enc(pk, mp);

s b« A9(c);

6 if b =0 Amg,mi € m A |mg| = |m1| then
7 | return 1

8 else

9 | return 0

where A has access to a decryption oracle O, which is defined

asfollow-

O(c) =

1if j > 0N A ciqic ¢ # cli] then

2 | JeJ— L

3 return (Dec(pk, sk, c[1]),..., Dec(pk, sk,cl[|c]|]))
4 else

5 | return L

Definition 16 (Signature scheme [80]). A signature scheme is
a tuple (Gen, Sign, Ver) of PPT algorithms such that:

o Gen, denoted (pk,sk) < Gen(1%), takes a security
parameter 1% as input and outputs a key pair (pk, sk).

o Sign, denoted o < Sign(sk, m), takes a private key sk
and message m as input, and outputs a signature o.

o Verify, denoted v < Ver(pk,m, o), takes a public key
pk, message m, and signature o as input, and outputs a
bit v, which is 1 if the signature successfully verifies and
0 otherwise. We assume Ver is deterministic.

Moreover, the scheme must be correct: there exists a neg-
ligible function p, such that for all security parameters k
and messages m, we have Pr[(pk,sk) + Gen(1%);0 <
Sign(sk,m); Ver(pk,m,o) = 1] > 1 — p(k).

Definition 17 (EU-CMA [80]). A signature scheme I' =
(Gen, Sign, Ver) satisfies existential unforgeablility under
adaptive chosen-message attack (EU-CMA) if for all PPT
adversaries A, there exists a negligible function u, such that
Sor all security parameters k, we have Succ(Exp-Sign(T,
A k) < u(k), where experiment Exp-Sign is defined as
follows:

Exp-Sign(T', A, k) =

1 (pk, sk) < Gen(1F);

2 Msg «+ 0;

3 (m,0) < A®(pk,1F);

4 if Ver(pk,m,o0) =1 Am & Msg then

5 | return1

6 else

7 | return 0

The experiment defines an oracle O. On invocation O(m),
oracle O computes a signature o + Sign(sk, m), records that

30The oracle in experiment Exp-CPA may access parameter j. Henceforth,
we continue to allow oracles to access experiment parameters without explic-
itly mentioning them.

the adversary requested a signature on m by updating Msg
to be Msg U {m}, and outputs o.

B. Proof systems

A proof system (originally known as an interactive proof
system [62]) is a two-party protocol between a prover and a
verifier. The prover convinces the verifier that a string x is in
a language L. Here, we assume that there is a witness relation
R, such that s € L iff there exists a witness w, such that
(s,w) € R. For any (s,w) € R, it must also hold that the
length of w is at most polynomial in the length of s. Proof
systems ensure that a prover can convince a verifier of any
valid claim (completeness), and that a verifier cannot be fooled
into accepting a false claim (soundness).

A sigma protocol [46], [66] is a proof system with a
particular three-move structure: commit, challenge, respond.

Definition 18 (Sigma protocol). A sigma protocol for a
relation R is a tuple (Comm, Chal, Resp, Verify) of PPT
algorithms such that:

o Comm, denoted (comm,t) + Comm(s,w), is executed
by a prover. Comm takes a statement s and witness w as
input, and outputs a commitment comm and some state
information t.

o Chal, denoted chal <— Chal(k), is executed by a verifier.
Chal takes a security parameter k and outputs a k-bit
string chal sampled uniformly at random.

o Resp, denoted resp < Resp(chal,t), is executed by a
prover. Resp takes a challenge chal and state information
t as input, and outputs a response resp.

o Verify, denoted v < Verify(s, (comm,chal,resp)) is
executed by a verifier. Verify takes a statement s and
transcript (comm, chal, resp) as input, and outputs a bit
v, which is 1 if the transcript successfully verifies and 0
otherwise. We assume Verify is deterministic.

Moreover, the sigma protocol must be complete: there exists
a negligible function u, such that for all security parame-
ters k and statements and witnesses (s,w) € R, we have
Pr[(comm,t) < Comm(s,w);chal <p {0,1}¥;resp +«
Resp(chal, t) : Verify(s, (comm, chal,resp)) = 1] > 1 — u(k).

Some sigma protocols ensure special soundness and special
honest-verifier zero knowledge. We will make use of a result
by Bernhard et al. that requires these properties, but we will
not need the details of those definitions in our proofs, so we
omit them here; see Bernhard et al. [20] for a formalization.

Definition 19. Let (Gen, Enc, Dec) be a homomorphic asym-
metric encryption scheme and ¥ be a sigma protocol for a
relation R.

¢ X proves correct key construction if
(1%, pk,m), (sk, 7)) € R < (pk, sk, m) = Gen(1*;7)

Further, suppose that (pk, sk, m) is the output of Gen(1%;7),
for some coins 1.
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> proves plaintext knowledge in a subspace if
((pk,c,m’), (m,r)) € R
& ¢ = Enc(pk,m;r) Amem' Am’ Cm.

> proves conjunctive plaintext knowledge if

((pk,c1y... ck), (my,r1,...,mg, 7)) € R
& /\ ¢i = Enc(pk, m;;r;) Am; € m.
1<i<k

> proves correct reencryption if

((pk,c,ce), (i,r)) € R
< c=cli] @ Enc(pk,e;r) A1 < i < |c|
where c is a vector of ciphertexts encrypted under pk, and
where ¢ is an identity element of the encryption scheme’s

message space with respect to ©.
Y is a plaintext equivalence test (PET) if

((pk,c,c,i),sk) € R
& ((i = 0 A Dec(pk, sk, c) # Dec(pk, sk,c’))
V (i = 1 A Dec(pk, sk, c) = Dec(pk, sk,c’)))
A Dec(pk, sk, c) # L A Dec(pk, sk,c’) # L.

Y is a mixnet if

((pk,c,c’),(r,x)) € R
e N\ Ix(i)] = cli] ® Enc(pk, e;[i])

1sispe Alel = le'| = I
where ¢ and ¢’ are both vectors of ciphertexts encrypted
under pk, and x is a permutation on {1,...,|c|}, and ¢
is an identity element of the encryption scheme’s message
space with respect to ©.

e X proves correct decryption if

((pk,c,m), sk) € R < m = Dec(pk, sk, ¢).

C. Non-interactive proof systems

A proof system is non-interactive if a single message is sent
from the prover to the verifier.

Definition 20 (Non-interactive proof system). A non-interac-
tive proof system for a relation R is a tuple of algorithms
(Prove, Verify) such that:

o Prove, denoted o < Prove(s,w), is executed by a prover
to prove (s,w) € R.

o Verify, denoted v < Verify(s, o), is executed by anyone
to check the validity of a proof. We assume Verify is
deterministic.

Moreover, the system must be complete: there exists a neg-
ligible function u, such that for all statement and witnesses
(s,w) € R, we have Prloc < Prove(s,w) : Verify(s,o)
1] > 1 — u(|s|), where |s| denotes the length of s. There
are various soundness definitions that can be considered for
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non-interactive proof systems. We will use simulation-sound
extractability, defined below.

We can derive non-interactive proof systems from sigma
protocols using the Fiat-Shamir transformation [52f], which
replaces the verifier’s challenge with a hash of the prover’s
commitment, concatenated with the prover’s statement.

Definition 21 (Fiat-Shamir transformation [52]]). Given a
sigma protocol ¥ = (Comm, Chal, Resp, Verifyy,) for relation
R and a hash function H, the Fiat-Shamir transformation,
denoted FS(X,H), is the tuple (Prove, Verify) of PPT algo-
rithms, defined as follows:

Prove(s,w) =
1 (comm,t) < Comm(s, w);
2 chal < H(comm, s);
3 resp < Resp(chal, t)
4 return (comm, resp)

)

s

Verify(s, (comm, resp)) =
1 chal < H(comm, s);
2 return Verifyy, (s, (comm, chal, resp))

It is straightforward to check that FS produces non-interactive
proof systems.

Some non-interactive proof systems ensure zero knowledge:
anything a verifier can derive about a witness can be derived
without interaction with a prover—that is, the prover can be
simulated. We define zero knowledge in the random oracle
model [9]. A random oracle can be programmed or patched.
We will not need the details of how patching works in our
proofs, so we omit them here; see Bernhard et al. [20]] for a
formalization.

Definition 22 (Zero knowledge). Suppose that ¥ is a sigma
protocol for relation R, that H is a random oracle, and that
(Prove, Verify) is a non-interactive proof system. Proof system
(Prove, Verify) satisfies zero knowledge if there exists a PPT
algorithm S and a negligible function p, such that for all PPT
adversaries A and all statements and witnesses (r,y) € R,
we have

Prb « AP () :b=1] — Pr[b « A™72() : b= 1] < p(|z|)

where oracles Py and Py are defined on inputs s and w
as follows: if (s,w) € R, then both Py and Py output L,
otherwise, P1 computes o < Prove(s,w) and outputs o, and
Py computes T < S(s) and outputs T. Moreover, algorithm S
can patch random oracle H. The algorithm S for which the
above definition holds is called a simulator for (Prove, Verify).

Some zero knowledge non-interactive proof systems en-
sure simulation sound extractability: an extractor can recover
witnesses from proofs by rewinding the prover, as discussed
below. We use extractors in our proofs of theorems, below, to
obtain witnesses from proofs.

Definition 23 (Simulation sound extractability [20], [64]).
Suppose that Y is a sigma protocol for relation R, that H is



a random oracle, and that (Prove, Verify) is a non-interactive
proof, system such that FS(X,H) = (Prove, Verify). Further
suppose S is a simulator for (Prove, Verify) and H can be
patched by S. Proof system (Prove, Verify) satisfies simulation
sound extractability if there exists a PPT algorithm K and a
negligible function p, such that for all adversaries A, coins
r, and statements and witnesses (x,w) € R, we hav

Pr[P « ();Q + A™P (—7r); W « /CA/(H,P, Q):
(1QI=[W[=3Jj€{1,....1Q[} . (QUI[], W[j]) ¢ R)
AVY(s,0) € Q,(t,7) € P . Verify(s,0) =1 Ao # 7] < p(|z

where A(—;r) denotes running adversary A with an empty
input and random coins r, where H is a transcript of the
random oracle’s input and output, and where oracles A’ and
‘P are defined below:

o A'(). Computes Q' < A(—;r), forwarding any of A’s
oracle calls to K, and outputs Q'. By running A(—;r),
IC is rewinding the adversary.

o P(s). Computes o «+ S(s);P « (P[1],...,P[|P]],
(s,0)) and outputs o.

Algorithm K is an extractor for (Prove, Verify).

Our definition of simulation sound extractability in the random
oracle model is an analogue of Groth’s definition in the
common reference string model [64, §2]. (See Bernhard et
al. [20, §1] for a detailed comparison.) Our presentation of
simulation sound extractability differs from the presentation
by Bernhard et al. [20] by formalizing some of the details.

Bernhard et al. [20] show that non-interactive proof sys-
tems derived using the Fiat-Shamir transformation satisfy zero
knowledge and simulation sound extractability:

Theorem 9 (from [20]]). Let 3 be a sigma protocol for relation
R, and let H be a random oracle. If % satisfies special
soundness and special honest verifier zero knowledge, then
FS(X,H) satisfies simulation sound extractability.

The Fiat-Shamir transformation can be generalized to in-
clude an optional string m in the hashes produced by functions
Prove and Verify. We write Prove(s,w,m) and Verify(s,
(comm, resp), m) for invocations of Prove and Verify which
include an optional string. When m is provided, it is included
in the hashes in both algorithms. That is, given FS(X,H) =
(Prove, Verify), the hashes are computed as follows in both
algorithms: chal < #(comm, s, m). Theorem [9] can be ex-
tended to this generalization.

APPENDIX B
VARIANTS OF Exp-IV

Our individual verifiability experiment with external au-
thentication (§lI-B1) can be equivalently formulated as an
experiment that challenges A to predict the output of Vote:

31We extend set membership notation to vectors: we write = € x if z is
an element of the set {x[¢] : 1 < < |x]|}

)
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Exp-IV-Ext'(II, A, k) =

1 (PKT7nC’757b) — A(k),
2 b + Vote(PK 1,nc, B,k);
3ifb=0 Ab # L then

4 | return 1

5 else

6 | return 0

Proposition 10. Given an election scheme 11, we have

VA Ju Vk . Succ(Exp-IV-Ext(I1, A, k)) < u(k)
< VA 3u' VE' . Succ(Exp-IV-Ext’(I1, A", k")) < i/ (K'),

where A and A’ are PPT adversaries, p and i’ are negligible
functions, and k and k' are security parameters.

Intuitively, if A can predict the output of Vote, then A can use
that prediction to generate a collision. And if A can generate
collisions, then A can use them to predict outputs.

Proof. For the forward implication, suppose A’ is a
PPT adversary such that Succ(Exp-IV-Ext' (I, A, k')) >
p(}g,) for some polynomial p and security parameter
k'. We construct an adversary A against Exp-IV-Ext.
On input £/, adversary A computes (PKy,nc,B,b) «
A'(K') and outputs (PKr,nc,B,8). Since A’ wins

Exp-IV-Ext’ with non-negligible probability, we have

1

p(k')

Moreover, since calls to algorithm Vote are independent, we
have

Pr[t/ < Vote(PK7,nc, B, k') :b=b Ab# 1] >

Pr[by <+ Vote(PK 1,n¢c, B, K');
by Vote(PKT, ne, B, k‘/)

;blzb/\bzzb/\h#L/\bz?’éH>p(k/)2'

1

It follows that Succ(Exp-IV-Ext(IL, A, k) > 7.

For the reverse implication, sup-
pose A s a PPT adversary such  that
Succ(Exp-IV-Ext(II, A, k)) > ﬁ for some polynomial
p and security parameter k. We construct an adversary A’
against Exp-IV-Ext’. On input k, adversary A’ computes
(PKT,’ILc, ﬂl,ﬂg) «— A(k’), b1 — VOte(PKT,TL(j,Bl, ]{1) and
outputs (PK,n¢, B2,b1). Since A wins Exp-IV-Ext with

probability no less than ﬁ, we have

1
Pr[b2 — VOte(PKTan0762ak) : bl = b2 A\ bl 7é J—] > m
It follows that Succ(Exp-IV-Int'(I1, A’, k)) > ﬁ, O

Our individual verifiability experiment with internal authen-
tication (§IV-B1) can also be reformulated as an experiment
that challenges A to predict the output of Vote algorithms:



Exp-IV-Int' (I, A, k) =

1 (PKTJ’L\/) — A(k)’

2 for 1 <i < ny do (pk,;, sk;) < Register(PK 7, k)
3 L {pky,....0k, };

4 Crpt + 0;

5 (n07ﬂai7b) A AC(L)’

6 b/ + Vote(sk;, PK,n¢c, 8,k);
7ifb=0 AV # L A sk; & Crpt then
8 | return 1

9 else

10 | return 0

Similarly to Section the adversary is given access to
oracle C and the voter index output on line 5 must be legal
with respect to ny .

Experiment Exp-1V-Int’ is strictly stronger than our original
experiment Exp-1V-Int, since predicting the output of Vote
does not imply the existence of collisions, whereas collisions
can be used to predict the output of Vote. For instance,
consider the following variant of Nonce (Definition [3):

Definition 24. Election scheme Nonce' is defined as follows:
o Setup(k) outputs (L, 1, 00, 00).

Register(PK 1, k) computes v € Zyr and outputs (r,r).

Vote(r, PK 7,n¢, 8, k) outputs (r, ).

Tally(PK 7, SK 1, BB, L,n¢, k) computes a vector X of

length nc, such that X is a tally of the votes on BB for

which the nonce is in L, and outputs (X, L).

Verify(PK 1, BB, L,n¢, X, P, k) outputs 1 if (X, P) =

Tally(L, L, BB, L,nc, k) and 0 otherwise.

Intuitively, an adversary can predict the output of Vote,
because the algorithm is deterministic and the electoral roll
lists private credentials. However, the Register algorithm en-
sures that voters’ credentials are distinct with overwhelming
probability, hence, instantiations of the Vote algorithm with
distinct voter credentials will never collide.

Proposition 11. Given an election scheme II, PPT adver-
sary A, negligible function u, and security parameter k, if
Succ(Exp-IV-Int'(I1, A, k)) < u(k), then there exists a PPT
adversary B such that Succ(Exp-IV-Int(IT, B, k)) < u(k).

The proof of Proposition [T1]is similar to the reverse implica-
tion proof of Proposition [I0]

APPENDIX C
HEL10S 4.0 SCHEME

We formalize a generic construction for Helios-like election
schemes (Figure [I). Our construction is parameterized on
the choice of homomorphic encryption scheme and sigma
protocols.

Setup generates the tallier’s key pair. The public key in-
cludes a non-interactive proof that the key pair is correctly
constructed. Vote takes a choice 5 € {1,...,n¢} and outputs
ciphertexts ¢y, ..., cp.—1 such that if 5 < nc, then ciphertext
cp contains plaintext 1 and the remaining ciphertexts contain
plaintext 0, otherwise, all ciphertexts contain plaintext 0. Vote
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also outputs proofs oy, ...,0,, so that this can be verified,
in particular, proof o; demonstrates that the ciphertext c;
contains 0 or 1 for all 1 < 5 < n¢ — 1, and the proof oy,
demonstrates that the homomorphic combination of ciphertexts
c1®---®cp,, contains 0 or 1 (i.e., the voter’s ballot contains a
vote for exactly one candidate). Tally homomorphically com-
bines ciphertexts representing votes for a particular candidate
and decrypts the homomorphic combinations. The number of
votes for a candidate 5 € {1,...,nc — 1} is simply the
homomorphic combination of the ballots for that candidate;
the number of votes for candidate n¢ is equal to the number of
votes for all other candidates subtracted from the total number
of valid ballots on the bulletin board. Verify checks that each
of the above steps has been performed correctly.

Lemmata demonstrate that generalized Helios is a
construction for election schemes.

Lemma 12. Helios(T', X1, ¥y, Y3, H) satisfies Correctness,
where T', 31, Yo, X3 and H satisfy the preconditions of

Figure 1]

The proof of Lemma is similar to the proof of Proposi-
tion [T7}

Lemma 13. Suppose I, X1, X9, X3 and H satisfy the
preconditions of Figure |I| Further suppose that Yo satisfies
special soundness and special honest verifier zero-knowledge,
and M is a random oracle. We have Helios(T', X1, X9, X3, H)
satisfies Completeness.

Proof. Let Helios(T', X1, X9, X3, H) (Setup, Vote,
Tally, Verify), FS(X1,H) (ProveKey, VerKey),
FS(323,H) (ProveCiph, VerCiph), and FS(33,H)
(ProveDec, VerDec). Suppose k is a security parameter, BB
is a bulletin board, and n¢ is an integer. Further suppose
(PK 1, sk) is a key pair, mp and m are integers, and (X, P)
is a tally, such that (PK,sk, mp, m¢g) + Setup(k) and
(X,P) « Tally(PKr,sk, BB,nc,k). Moreover, suppose
|BB| < mp. We focus on the case nc > 1; the case ng = 1
is similar. By definition of Setup, there exist coins s such
that (pk, sk,m) = Gen(1¥;s), PK+ < (pk,m,p) and mp
is the largest integer such that {0,..., mp} C m, where p is
an output of ProveKey((1*, pk,m), (sk, s)). By definition of
Tally, we have X is a vector of length nc and P is a vector
of length nc — 1. It follows that Verify can successfully
parse X, P, and PKy. Moreover, by the completeness
of (ProveKey, VerKey), we have VerKey((1*, pk,m),p)
1 with overwhelming probability. Let {b1,...,bs} be
the largest subset of BB satisfying the conditions given
by the tally algorithm. If {by,...,b,} = 0, then X is a
zero-filled vector and Verify outputs 1, concluding our proof,
otherwise, we proceed as follows. Since {by,...,bs} is a
subset of BB, we have ¢ < mp. By definition of Tally,
we have for all 1 < ¢ < ¢ that /\;’jl_lVerCiph((pk,bi[j]7
{0,1}),b;[j + nc — 1],j) = 1. By Theorem [9} we have
(ProveCiph, VerCiph) satisfies simulation sound extractability,
hence, for all 1 < ¢ < fand all 1 < j < ne — 1 we have
b;[j] is a ciphertext with overwhelming probability. It



Fig. 1 Generalized Helios

Suppose I" = (Gen, Enc, Dec) is an additively homomorphic asymmetric encryption scheme with a message space that, for
sufficiently large security parameters, includes {0, 1}, 3 proves correct key construction, X5 proves plaintext knowledge in
a subspace, X3 proves correct decryption, and # is a hash function. Let FS(X1,H) = (ProveKey, VerKey), FS(X2, H) =
(ProveCiph, VerCiph), and FS(X3,H) = (ProveDec,VerDec). We define generalized Helios Helios(I', 31,33, %3, H) =

(Setup, Vote, Tally, Verify) as follows.

o Setup(k). Select coins s, compute (pk, sk, m) < Gen(1¥;s); p « ProveKey((1¥, pk, m), (sk, s)); PK 7 < (pk, m, p), let
mp be the largest integer such that {0,..., mp} C m, and output (PK 7, sk, mp, c0).
o Vote(PK1,nc, 3, k). Parse PK as a vector (pk, m, p). Output L if parsing fails or VerKey((1*, pk,m),p) # 1V 3 ¢

{1,...,n¢c}. Select coins r1,...,7,,—1 and compute:
for 1 <j<nc—1do
if j = 3 then m; <— 1 else m; < 0
¢; < Enc(pk,mj;r;);
o < ProveCiph((pk, ¢;,{0,1}), (m;,75),J)
c—C1 Q- QCpe—1;
m<mip©---OMpo—1,
reri @B g1
One < ProveCiph((pk,c,{0,1}), (m,r),n¢c)

Output ballot (¢1,...,Cne—1,015---,0ng)-

o Tally(PK, sk, BB,nc, k). Initialize vectors X of length nc and P of length nc — 1. Compute for 1 < j < n¢e do
X[j] < 0. Parse PK 7 as a vector (pk,m, p). Output (X, P) if parsing fails. Let {b1,...,b¢} be the largest subset of
BB such that for all 1 < i < ¢ we have b; is a vector of length 2-nc — 1 and AT< ! VerClph((pk bil4], {O 11),b:[5 +
nc — 1], 7) = 1 A VerCiph((pk, b;[1] ® - - - ® bj[nc — 1],{0,1}), b;[2 - nc — 1], nc) = 1. If {by,...,be} = 0, then output

(X, P), otherwise, compute:
for 1 <j<nc—1do

L cbifj]®@ - @ beljl;
X[j] + Dec(pk, sk, c);
P[j] + ProveDec((pk, ¢, X[j]), sk)

X[ne] €= 58 X[j];
Output (X, P).

e Verify(PK 7, BB,n¢, X, P, k). Parse X as a vector of length n¢, parse P as a vector of length no — 1, parse PK 1 as
1%, pk,m), p) # 1. Let {b1,...,b,} be the largest subset of BB
satisfying the conditions given by the tally algorithm and let mp be the largest integer such that {0,..., mg} C m. If
{br,. . b} = OANTS X[j] = 0 or AT VerDec((pk, b1 [j]@- - @be[5], X[j]), P[j]) = 1A X[nc] — z”c TX[j]A

a vector (pk, m, p). Output 0 if parsing fails or VerKey((

1 < ¢ < mgp, then output 1, otherwise, output 0.

The above algorithms assume nc > 1 and we define special cases of Vote, Tally and Verify when ne = 1:
o Vote(PK1,nc,f3, k). Parse PK 1 as a vector (pk, m, p). Output L if parsing fails or VerKey((1*, pk,m), p) # 1V 3 # 1.
Select coins r, compute m < 1; ¢ < Enc(pk, m;r); o < ProveCiph((pk, ¢, {0,1}), (m,r)), and output ballot (c, o).
o Tally(PKr, sk, BB,nc, k). Initialize X and P as vectors of length 1. Compute X[1] < 0. Parse PK s as a vector

(pk,m, p). Output (X,P) if parsing fails. Let {b1,...,

by

} be the largest subset of BB such that for all 1 < ¢ < ¢

we have b; is a vector of length 2 and VerCiph((pk,b;[1],{0,1}),5;[2]) = 1. If {b1,...,b¢} = 0, then output (X, P).
Otherwise, compute ¢ < bi[1] ® --- ® bg[1]; X[1] < Dec(pk, sk, c); P[1] < ProveDec((pk, ¢, X]1]), sk) and output

(X, P).

e Verify(PK 7, BB,n¢, X, P, k). Parse X and P as vectors of length 1, and parse PK 7 as a vector (pk,m, p). Output 0 if
be} be the largest subset of BB satisfying the conditions given
by the tally algorithm and let mp be the largest integer such that {0,...,mp} Cm. If {b1,...,bs} =0 AX[1] =0 or
VerDec((pk,b1[1] ® - -- @ be[1], X[1]),P[1]) = 1 A1 < £ < mp, then output 1, otherwise, output 0.

parsing fails or VerKey((1%, pk, m),p) # 1. Let {by, ...,

follows for all 1 < j < ne — 1 that by[j] ® -+ ® be[j] is
a ciphertext with overwhelming probability. By definition
of Tally and the completeness of (ProveDec, VerDec), we

have A"S;" VerDec((pk,bi[j] ® -+ ® be[j], X[j]), Plj]) =
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INX[ng] =£-377C ' X [j] with overwhelming probability,
hence, Verify outputs 1 with overwhelming probability,
concluding our proof. O

Definition 25 (Collision-free). Suppose I' = (Gen, Enc, Dec)



is an asymmetric encryption scheme, Y1 proves correct key
construction, H is a hash function, and m is a message space.
Let FS(21,H) = (ProveKey, VerKey). If for all security
parameters k, public keys pk, proofs p, messages m1, ms € m,
and coins r1 and r9, we have

VerKey((1%, pk,m), p) = 1 A (mq # ma V71 # 19)
= Enc(pk,m1;r1) # Enc(pk,ma;rs)

Then we say T is collision-free for m.

Lemma 14. Suppose T, X1, Yo, X3 and H satisfy the
preconditions of Figure Further suppose T is collision-
free for {0,1}. We have Helios(T',X1,%0, %3, H) satisfies
Injectivity.

Proof. Let Helios(T', 21,35, %3, H) (Setup, Vote, Tally,
Verify), I' = (Gen, Enc, Dec), and FS(X2;,H) = (ProveKey,
VerKey). Suppose k is a security parameter, PK s is a public
key, nc is an integer, and 8 and (' are choices such that
B # (. Further suppose b and b’ are ballots such that
b + Vote(PKT,nc,ﬁ,k;), o+ Vote(PKT,nc,,B’,k:),
b# 1, and V' # L. By definition of Vote, we have PK 1 is a
vector (pk,m, p) and VerKey((1¥, pk,m), p) = 1. Moreover,
there exist coins r and r’ such that

1 ifg=1

b[1] = Enc(pk, m;7), where m = { 0 otherwise

and
1 ifp' =1

, B roo [
V'[1] = Enc(pk, m’;r"), where m' = { 0 otherwise

Since B8 # (', we have m # m’'. Furthermore, since I' if
collision-free for {0,1}, we have b[1] # b/[1] and, therefore,
b#. O

Generalized Helios can be instantiated to derive Helios 4.0:

Definition 26 (Helios 4.0). Helios 4.0 is Helios(T', X1, 3o, X3,
H), where T is additively homomorphic El Gamal [43, §2],
Y1 is the sigma protocol for proving knowledge of discrete
logarithms by Chaum et al. [29| Protocol 2], 35 is the sigma
protocol for proving knowledge of disjunctive equality between
discrete logarithms by Cramer et al. [42| Figure 1], X3 is
the sigma protocol for proving knowledge of equality between
discrete logarithms by Chaum and Pedersen [30, §3.2], and
‘H is a random oracle.

Although Helios actually uses SHA-256 [98]], we assume that
‘H is a random oracle to prove Theorem @ Moreover, we
assume the sigma protocols used by Helios 4.0 satisfy the
preconditions of generalized Helios—that is, [29, Protocol 2]
is a sigma protocol for proving correct key construction, [42}
Figure 1] is a sigma protocol for proving plaintext knowledge
in a subspace, and [30, §3.2] is a sigma protocol for proving
decryption. We leave formally proving this assumption as
future work.

To show that Helios 4.0 is an election scheme, we must
demonstrate that Correctness, Completeness and Injectivity are
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satisfied. Correctness follows immediately from Lemma [I2]
And we show that Completeness and Injectivity are also
satisfied.

First, Completeness. Bernhard et al. [20, §4] remark that
the sigma protocol used by Helios 4.0 to prove plaintext
knowledge in a subspace satisfies satisfy special soundness
and special honest verifier zero knowledge, hence, Helios 4.0
satisfies Completeness by Lemma [I3]

Secondly, Injectivity. A non-interactive proof system
(ProveKey, VerKey) derived from a sigma protocol for prov-
ing correct key construction is sufficient to ensure that El
Gamal is collision-free, assuming algorithm VerKey guaran-
tees that public keys are constructed from suitable parameters:
if VerKey((1%, pk, {0,1}), p) = 1, then there exists p, ¢, g and
h such that pk = (p,q,g,h) and (p,q,g) are cryptographic
parameters—i.e., p =2-q+ 1, |g| = k, and ¢ is a generator
of Z;, of order g.

Lemma 15. Suppose ¥, is a sigma protocol that proves
correct key construction and H is a hash function. Let
FS(X1,H) = (ProveKey, VerKey). Further suppose for all
security parameters k, public keys pk, and proofs p, we have
VerKey((1%, pk,{0,1}), p) = 1 implies h # 0 and there exists
p, g, g and h such that pk = (p, q, g, h) and (p, q, g) are cryp-
tographic parameters. It follows that additively homomorphic
El Gamal is collision-free for {0,1}.

Proof. Suppose k is a security parameter, pk is a public key,
p is a proof, my,mg € {0,1} are messages and r; and 79
are coins such that VerKey((1%,pk,{0,1}),p) = 1, m; #
mo Vry # 19, pk = (p,q,g,h) and (p, ¢, g) are cryptographic
parameters, for some p, g, g and h. Further suppose that
¢1 and ¢y are ciphertexts such that ¢; = Enc(pk,mq;r1),
ca Enc(pk,ms;72), and Enc is El Gamal’s encryption
algorithm. If r; # 79, then we proceed as follows. By def-
inition of Enc, we have ¢1[1] = ¢" (mod p) and c3[1] = ¢g"
(mod p). Since 1 and 7o are distinct, we have g™ # g
(mod p). (We implicitly assume that coins 7, and ro are
selected from the coin space Z;, hence, g"* = g¢g"* mod p
and ¢" = ¢" mod p.) It follows that ¢; # cy. Otherwise
(r1 = 12), we have m; # mo and we proceed as follows.
By definition of Enc, we have ¢;[2] = A" - g* (mod p) and
c2[2] = h"™ - g (mod p). Since (p,q,g) are cryptographic
parameters and h # 0, we have h" # h™ - g (mod p), which
is sufficient to conclude, because my, mg € {0,1}. O

The sigma protocol for proving knowledge of discrete log-
arithms by Chaum et al. [29, Protocol 2] does not explic-
itly require the suitability of cryptographic parameters to be
checked, hence, Lemma [I5] is not immediately applicable.
Nonetheless, we can trivially make the necessary checks
explicit and, hence, the non-interactive proof system derived
from the sigma protocol for proving knowledge of discrete
logarithms by Chaum et al. is sufficient to ensure that El Gamal
is collision-free. It follows that Helios 4.0 satisfies Injectivity,
hence, Helios 4.0 is an election scheme.



APPENDIX D
PROOF: HELIOS 4.0 IS VERIFIABLE

Elections schemes constructed from generalized Helios
satisfy individual (§D-A) and universal (§D-B) verifiability,
hence, such schemes satisfy election verifiability with external
authentication (§D-C). It follows that Helios 4.0 satisfies

election verifiability (§D-D).
A. Individual verifiability

Proposition 16. Suppose T, 31, Yo, X3 and H satisfy the
preconditions of Figure|l| Further suppose that I is collision-
free for {0,1}. We have Helios(T',21,%0, X3, H) satisfies
individual verifiability.

The proof of Proposition [16] is similar to the proof of
Lemma [[4l

Proof. Let Helios(T', 31, Y, %3, H) (Setup, Vote, Tally,
Verify) and FS(X1,H) = (ProveKey, VerKey). Suppose k
is a security parameter, PK is a public key, nc is an
integer, and B and 3 are choices. Further suppose that b
and b’ are ballots such that b «+ Vote(PK7y,nc,(B,k),
b «+ Vote(PKy,nc,B,k), b # 1, and b/ # L. By
definition of Vote, we have PK s parses as a vector (pk, m, p)
and VerKey((1¥, pk,m),p) = 1. Moreover, b[1] and b'[1]
are ciphertexts such that b[1] « Enc(pk,m) and b'[1] +
Enc(pk,m’), where m,m’ € {0,1}. Furthermore, the ci-
phertexts are constructed using random coins—i.e., the coins
used by b[1] and ¥'[1] will be distinct with overwhelming
probability. Since I' is collision-free for {0,1}, we have
b[l] # V1] and b # b with overwhelming probability,
concluding our proof. O

B. Universal verifiability

Proposition 17. Suppose T, 31, Yo, Y3 and H satisfy the
preconditions of Figure Further suppose that X1, Yo
and X3 satisfy special soundness and special honest veri-
fier zero-knowledge, and H is a random oracle. We have

Helios(T', X1, X9, X3, H) satisfies universal verifiability.

Proof. Let 1 = Helios(T", 31,39, Y3, H) = (Setup, Vote,
Tally, Verify), FS(31,H) = (ProveKey, VerKey), FS(Xo,
H) = (ProveCiph, VerCiph), and FS(X3,H) = (ProveDec,
VerDec). By Theorem @ each of the non-interactive proof
systems satisfies simulation sound extractability.

Suppose k is a security parameter and 4 is a PPT adversary.
Further suppose that an execution of Exp-UV-Ext(IL, A, k)
computes

(PKT,BB,nc,X, P) < A(k);
Y « correct-tally(PK 1, BB,nc, k)

such that Verify(PK 7, BB,n¢, X, P, k) 1. (If Verify(
PK+,BB,n¢,X, P k) # 1, then we can conclude imme-
diately.) We focus on the case no > 1; the case ng = 1 is
similar.

By definition of the verification algorithm, vector X is of
length nc and P is a vector of length nc —1. Moreover, PK
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is a vector (pk,m, p). Let {by,..., by} be the largest subset of
BB such that for all 1 <4 < ¢ we have b; is a vector of length
2-nc—1and A< VerCiph((pk, bs[j], {0,1}), bs[j + nc —
1],7) = 1 AVerCiph((pk, b;[1] ® - - - Q@ b;[nc —1],{0,1}), b;[2-
ng — 1],710) =1.

We have for all choices f € {1,...,n¢}, coins r and
ballots b = Vote(PK 1,n¢, 8, k;r) that b & BB\{by,...,be}
with overwhelming probability, since such an occurrence
would imply a contradiction: {b1,...,b,} is not the largest
subset of BB satisfying the conditions given by the tally
algorithm, because b is a vector of length 2 - nc — 1 such

that A"} VerCiph((pk, b[j], {0, 11),b[j + nc: — 1],7) = 1 A
VerCiph((pk,b[1]®- - -®b[nc—1],{0,1}),b[2-nc—1],nc) =
1 with overwhelming probability, but b & {by,...,be}. It
follows that:
correct-tally(PK r, BB, n¢, k)
= correct-tally(PK 7,{b1,...,b¢},nc, k) (1)

A proof of follows from the definition of function
correct-tally.
We proceed by distinguishing two cases.

Case I: {by,...,be} (). By definition of function
correct-tally and , we have Y is a vector of length nc
such that A7<, Y[j] = 0. Since A<, X[j] = 0, we have
X =Y by definition of the verification algorithm.

Case II: {b1,...,b;} # (. By definition of the verification
algorithm, we have VerKey((1*, pk,m),p) = 1. Moreover,
by simulation sound extractability, we are assured that pk is
an output of Gen with overwhelming probability—i.e., there
exists s and sk such that (pk, sk, m) = Gen(1%; s).

By simulation sound extractability, with overwhelming
probability, for all 1 < ¢ < ¢ there exists messages m; 1,
ooy Mime—1 € {0,1} and coins 7;1,...,7; 2.nc—2 such that
for all 1 < j <nec — 1 we have

b;[j + nc — 1] = ProveCiph((pk, b;[5], {0,1}),
(MijsTig), JiTij4ne—1)
and
bi[j] = Enc(pk,m; j;7i ;).

Moreover, for all 1 < ¢ < £ we have )
and there exist coins 7; 2.,,—1 such that

nc—1

;S miy € {01}

b;[2 - nc — 1] = ProveCiph(pk, ¢, {0, 1}),

(mv 7"), ngc; /ri,lncfl)
with overwhelming probability, where ¢ < b;[1]®- - -®b;[nc—
,m<—mi1 O Omipe—1, and 7«11 B BT ne—1.

By inspection of Vote, for all 1 < i < £ there exists (3;,r;
such that
b; = Vote(Pqu ne, ﬂi7 k; TZ')
and either 3; = ng A /\;‘gl‘l mi; =0or B €{l,...,nc —
L Amig = 1A Njer o po—18041,mo—1y Mig = 0- 1t
follows forall 1 <¢ < /¢ and 1 <j <ng — 1 that:

mi; =04<=Bi=ncVB#]J 2



mi;=1<=Bi=3j (3)
Moreover, for all 1 <4 < ¢ we have:
no—1
Z mi,j:0<:>61:nc 4)
j=1

Furthermore, we have the following facts:

Fact 1. For all integers 3 and k such that 1 < 8 < ng, we
have:

37%b € ({b1, ..., b} \ {L}):
Ir : b = Vote(PK ,nc, B, k;r)
— FFie{,...

A} B=pi

Fact 2. For all integers j and k such that 1 < j < ng — 1,
we have:

4
,é}:ﬁiZj — kzzmi,j

i=1

e {1,...

Proof of Fact 2] For the forward implication, suppose j, k are
integers such that 1 < j < ng —1 and 37%i € {1,...,¢} :
B; = j. We proceed by induction on /. In the base case
(¢! = 0), we have £ = 0, hence, k = Elemm’. In the
inductive case, we distinguish two cases. Case I: 3=Fi ¢
{1,...,£—1} : B; = j holds. We have (3, # j by definition
of the counting quantifier and, hence, m; ; = 0 by (Z). By our
induction hypothesis, we derive k = Y"1 m; ; = Sor_, ma .
Case I: 3=%; € {1,...,4 — 1} : B3; = j does not hold.
We have 3, = j by definition of the counting quantifier
and, hence, m; ; = 1 by . Moreover, we have 3=F—1; ¢
{1,...,£ =1} : B; = j holds. By our induction hypothesis,
we derive k — 1 = 0"1 m, ;, that is, k = 30_ m, ;.

For the reverse implication, suppose j, k are integers such
that 1 < j < ng—1and k = Zle m, j. We proceed by
induction on /. In the base case ({ = 0), we have &k = 0,
hence, 3=%i € {1,...,¢} : B; = j. In the inductive case,
we distinguish two cases. Case I: k = Ze711 m; ;. We have
my; = 0, hence, B¢ # j by (). By our induction hypothesis,
we have 37Fi € {1,...,0 — 1} ﬁl = j. Since f3; # j, the
result follows. Case II k # Zz 1 m; ;. Since my ; € {0,1},
we have my ; = 1, hence, 8, = j by (3| . Moreover, we have
k—1= 21;11 m; j. By our induction hypothesis, we derive
F=F=Yie {1,...,4 — 1} : B; = j. The result follows.

Fact 3. For all integers k, we have

nc—1 ¢

,g}Zﬂi:TLc — k=/0-— Z Zmi’j

j=1 i=1

IR e {1,...

Proof of Fact[3] For the forward implication, suppose 3=k e
{1,...,¢} : B; = nc. We proceed by induction on /.
In the base case (¢ 0), we have k 0, hence,
ko= 0— 37 'S miy. In the inductive case, we
distinguish two cases. Case I: 3=%i ¢ {1,...,£ — 1}

B; nc holds. We have By # ng by deﬁnition of
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the counting quantifier and we derlve Z
by ' Moreover, since )< lmg, € {0 1}, we have
2;01 1mg7j = 1. By our 1nduct10n hypothesis, we derive
= f—l—E"c 122 1My = E_Enc 122 1 Mg
Case II: 37%i € {1,...,£ — 1} : B; = nc does not hold.

mg_’j 7£ 0

We have 3, = nc by deﬁnition of the counting quantifier
and we derive Z mm» = 0 by . Moreover, we have
F=F1i e {1,. é — 1} : i = n¢ holds. By our induction

hypothesis, we derlve k;—l ={—-1— E"c ! E 1 m;_ j, that
is, k={— ch IZ ch 121 1 Mg

For the reverse 1mp11cat10n suppose k { —
Py 'S mi;. We proceed by induction on . In the base
case (£ = 0), we have k = 0, hence, 3=%i € {1,..., 0} : B; =
ne. In the inductive case, we distinguish two cases. Case I:
k=€-1-379" S We have 37 Tlmgy =1
Since mygq,...,Mene—1 € {0,1}, there ex1sts j such that
1 <j <nec—1and my; = 1, moreover, 5 = j by
(3. hence, B, 7é nc. By our induction hypothesis, we derive
F=ki € {1,. —1}: 52 = n¢. The result follows. Case II:

k#0—1— ch 'S m, . Since Z;fl_l my,; € {0,1},

we have Z mm = 0, and we derive 8; = n¢ by
Moreover, we have k—1=(-1-— Z;ﬁfl Zf llmz 5 By

our induction hypothesis, we derive 3=%~1i € {1,...,
B; = nc. The result follows.

0—1}:

We proceed the proof of Proposition |1/|using the above facts.

By definition of the verification algorithm, we have

n 1 . . . .

"1 VerDec((pk, bi[j] @ --- @ be[j], X[4]), P[]) = 1A
X[j]. By simulation sound extractability,

A

Xlne] = (=Y 750 X
we have for all 1 < j < ng — 1 that X[j] = Dec(pk,
skyb1[j] ® -+ - @ be[j]) with overwhelming probability, hence,
X[j] =m1 ; ®---©my,;, with overwhelming probability. Let
mp be the largest integer such that {0,...,mp} C m. By
definition of the verification algorithm, we have ¢ < mp. It
follows that my j © --- @ mg; = > b, M ;, hence,

¢
X[j] = Zmi,j
i=1

with overwhelming probability. By definition of function
correct-tally, and Fact we have Y is a vector of length
ne such that for all 1 < 8 < ne we have

YA =kif IR {1,....0}: B=0;
It follows by Facts [2] and [3 that for all 1 < 3 < nc we have
X[8] = Y[B] with overwhelming probability, hence, X =Y
with overwhelming probability.

We have X = Y with overwhelming probability in both
cases—i.e., Exp-UV-Ext(II, A, k) outputs 0 with overwhelm-
ing probability and Succ(Exp-UV-Ext(II, A, k)) is negligible,
concluding our proof. O



C. Election verifiability

By Propositions[I6] & [I7] election schemes constructed from
generalized Helios satisfy election verifiability with external
authentication:

Corollary 18. Suppose T', 31, X9, X3 and H satisfy the
preconditions of Figure|l| Further suppose that T is collision-
free for {0,1}, X1, X9 and X3 satisfy special soundness and
special honest verifier zero-knowledge, and H is a random
oracle. We have Helios(T', 31, Y0, X3, H) satisfies election
verifiability with external authentication.

D. Proof: Theorem

Our proof of Theorem [2]is reliant on Corollary [I8] We have
already shown that the sigma protocol used by Helios 4.0 to
prove discrete logarithms is sufficient to ensure that El Gamal
is collision-free (Lemma , hence, it remains to show that the
sigma protocols used by Helios 4.0 satisfy special soundness
and special honest verifier zero-knowledge.

Bernhard et al. [20, §4] remark that the sigma protocols
used by Helios 4.0 to prove discrete logarithms and equality
between discrete logarithms both satisfy special soundness and
special honest verifier zero knowledge, hence, Theorem [J] is
applicable. Bernhard et al. also remark that the sigma protocol
for proving knowledge of disjunctive equality between discrete
logarithms satisfies special soundness and “almost special
honest verifier zero knowledge” and argue that “we could
fix this[, but] it is easy to see that ... all relevant theorems
[including Theorem [J]| still hold.” We adopt the same and
assume that Theorem [9] is applicable.

Proof of Theorem 2] The proof follows from Corollary [I§]
subject to the applicability of Theorem [J]to the sigma protocol
used by Helios 4.0 to prove knowledge of disjunctive equality
between discrete logarithms. O

APPENDIX E
PROOF: HELIOS 2.0 IS NOT VERIFIABLE

Bernhard et al. [20] demonstrate that Helios 2.0 [5] is
not verifiable and we show that Helios 2.0 does not satisfy
Ver-Ext.

Definition 27 (Weak Fiat-Shamir transformation [20]). The
weak Fiat-Shamir transformation is a function wFS that is
identical to FS, except that it excludes statement s in the
hashes computed by Prove and Verify, as follows: chal +
H(comm).

Definition 28 (Helios 2.0). Let Helios be Helios after replac-
ing all instances of the Fiat-Shamir transformation with the
weak Fiat-Shamir transformation and excluding the (optional)
messages input to ProveCiph—i.e., PB\QCiph should be used
as a binary function. Helios 2.0 is Helios(T', 31, 32, X3, H),
where T, X1, Yo, X3 and H are given in Definition

Proposition 19. Helios 2.0 does not satisfy Ver-Ext.

Fig. 2 Adversary against Helios 2.0

Given a security parameter k as input, A computes primes p
and 1 such that p = 2- ¢+ 1 and ¢ is of length k. A also
computes a generator g of the multiplicative group Zj. Let
nc + 2 and m < Ny_;, moreover, let m > 1 be an element
of m. The adversary proceeds as follows:

%coins

(ao, bo, aq, bl) <R Z4;

$witnesses

Ag + g* (mod p);

By + g" (mod p);

Ay g (mod p);

By <+ g% (mod p);
%challenge hash

¢ < H(Ao, Bo, A1, B1) (mod q);
$private key

(bo+cm)-(1—m)—by-m
n T ap-(1—m)—ai-m

12 schallenges
13 C] bll_j;'” (mod ¢);

14 ¢o < ¢ —c; (mod q);

15 $coins

16 7 <R ZLg;

17 $responses

18 fo + ag+co-r (mod q);

1 f1 < a;+c¢-r (mod q);

20 3proof of plaintext knowledge
21 0 < (Ao, Bo, co, fo, A1, B1,c1, f1);

22 $public key

23 h < g (mod p); pk < (p,q,9,h);

24 3proof of correct key construction
25 p + ProveKey((1%, pk,m), (z,7"));

26 3ciphertext

27 e < (¢" mod p,h" - g™ mod p);

28 $bulletin board

29 BB+ {(e,0,0)};

3 3tally

31 X« (m,1—m);

2 %$proof of decryption

33 P < (ProveDec((pk,e,m),x));

34 return ((pk,m,p), BB,n¢, X, P)

o R 7 T R R SR

—
=)

(mod q);

where 7’ is computed such that (pk,z, m) = Gen(1%;7/).

Our proof of Proposition [I9) formalizes the attack by Bernhard
et al. [20, §3] in the context of our universal verifiability
experiment.

Proof. Let Vote and Tally be the vote and tallying algo-
rithms defined by Helios 2.0. Moreover, let wFS(X;,H) =
(ProveKey, VerKey), wFS(X3,H) = (ProveCiph, VerCiph)
and wFS(X3,H) = (ProveDec,VerDec). We construct an
adversary A (Figure [2) against the universal verifiability
experiment.

Suppose an execution of Exp-UV-Ext(II, A, k) computes

(PKTaBB7nC7XaP) <_A(k)7
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Y « correct-tally(pk, BB, nc, k)

Since m > 1, there is no choice f {1,2}
nor coins r such that Vote(PKy,nc,B,k;r) € BB.
By definition of function correct-tally, we have Y
(0,0). Moreover, since X (m,1 — m), we have
X # Y and X[2] 1 — X][1]. Let us show that
Verify(PK 7, BB,n¢, X, P,k) = 1. By definition of Verify,
we have PK 1 is a vector (pk, m, p). Moreover, by the com-
pleteness of (ProveKey, VerKey) and (ProveDec, VerDec), we
have VerKey((1¥, pk,m),p) = 1 and VerDec((pk,e, X[1]),
P[1]) = 1. It remains to show that BB is the largest subset
of BB satisfying the conditions given by the Tally algorithm.
Since BB = {(e,0,0)} and (e,0,0) is a vector of length
2-nc—1, it suffices to show that VerCiph((pk, e, {0,1}),0) =
1. Let us recall the definition of VerCiph (cf. [42, Figure 1]
and Definition 27):

o VerCiph((pk,e, {0,1}),0). Parses pk as (p,q,g,h), e
as (R,S), and o as (Ao, By, co, fo, A1, B1,c1, f1), out-
putting 0 if parsing fails. If g0 = Ay - R (mod p) A
hfo = By-S (mod p)Agh = A;-Rt (mod p)AhSt =
By - (S/g)** (mod p) A H(Ao, Bo, A1, B1) = co + 1
(mod p), then output 1, otherwise, output 0.

We have

S

= apg+co-r = gao A (gr)co = AO . Rco

9 (mod p)
ga1+cl~r = ga1 3 (gr)cl = Al . R

gfo
g = (mod p)

Moreover, we have hfo = g#(aotcor) (mod p) and By- S =
ghoteo@r+m) (mod p), hence, to show hfo = By - S

(mod p), it is sufficient to show (bg+co-m) = z-ag (mod q):

bo+co-m
=bg+c-m—m-cy

bo + ¢ - m — m=am
- —m
— (botem)(1—m)—bi-m+tai-m-=zx

- 1-m
(bo-+e-m)(1—m)—by -m+ 1 ‘m-((bgFe-m)(1—=m)—by-m)

ag(I—m)—ag-m

- 1-m

— (ao(A—=m)—ai-m)((bo+c-m)(1—m)—bs-m)

- (I1—m)(ap(l—m)—ai-m)

+ ay-m((bo+cm)(1—m)—bi-m)
(1—m)(ao(1—m)—ai-m)

ao(1—m)((bp+c-m)(1—m)—bi-m)

- (1—m)(ag(l—m)—aq-m)

— ag-((bo+cm)(1—m)—b1-m)

- ap(l—m)—ai-m

=xz-a9 (mod q)
Similarly, A/t = g“(®1*<') (mod p) and B - (S/g) =
ghrrer@rtm=1) (mod p), hence, to show h/* = By -(S/g)*

(mod p), it is sufficient to show by + ¢;(m — 1) = a4
(mod q):

- X
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Furthermore, we have

H(Ao, By, A1,B1)=coy+tcr=c—ci+a

= H(Ao, Bo, A1, B1) —c1+c1 (mod p)

It follows that VerCiph((pk, e, {0,1}),0) = 1, concluding our
proof. O

APPENDIX F
PROOF: Exp-EV-Int = Exp-1V-Int

Our eligibility verifiability experiment (§IV-B3) asserts that
no one can construct a ballot that appears to be associated
with public credential pk unless they know private credential
sk. It follows that a voter can uniquely identify her ballot
on the bulletin board, because no one else knows her private
credential. Eligibility verifiability therefore implies individual
verifiability (Theorem ).

Our proof of Theorem E] is reliant on distinct credentials,
which is an consequence of eligibility verifiability:

Lemma 20. If an election scheme 11 satisfies strong eligibility
verifiability, then there exists a negligible function p, such that
for all security parameters k, we have

Pr[(PK,SK T, mp, m¢) < Setup(k);
(pky, sko) < Register(PK 7, k);
(pky, sk1) + Register(PK 1, k) :
sko = ski1] < u(k)

Proof. Suppose an election scheme II satisfies Exp-EV-Int,
but

Pr[(PK,SKT,mp, m¢) < Setup(k);
(pky, sko) < Register(PK 7, k);
(pky, sk1) + Register(PK 1, k) :
1
p(k)

for some polynomial p and security parameter k. Then we can
construct an adversary A that wins Exp-EV-Int as follows.
Adversary A is given input k£ and runs Setup to obtain a key
pair (PK,SK7), chooses some positive integer ny, and
outputs (PK7,ny). The challenger then generates ny key
pairs and gives the set L of public keys to .A. Now A simply
runs Register(PK 1, k) to get a key pair (pk, sk), chooses
some positive integers nc and S such that 1 < § < ng,
computes b « Vote(sk, PK,n¢, 8, k), and outputs (n¢,b).
We know that secret keys generated by Register collide with
probability at least ﬁ, so Register must generate a particular

Sk’o = Sk‘l] Z

secret key sk’ with probability p%c). Therefore, this sk’ will
correspond to one of the public keys in L with probability p"(‘kf) .
Furthermore, the key sk generated by the adversary will be sk’
with probability —~. Therefore, b will be a vote constructed
under a voter’s secret key with probability Z)?T")z, so A wins

p(k)
the experiment with non-negligible probability. O




A. Proof: Theorem

Suppose there exists an adversary A’ that wins
Exp-1V-Int(T1, A, k) with probability ﬁ for some polyno-
mial p. Then we can construct an adversary A that wins
Exp-EV-Int(IL, A, k) with non-negligible probability. Adver-
sary A is given k as input, which it passes to A’. Adversary
A’ may ask for secret keys from its oracle C, in which case A
forwards these queries to its own, identical oracle. Adversary
A then forwards the oracle’s response back to A’. Adversary
A’ then outputs (PK 7, ny ), which is then output by A. Next,
A is given the public keys (pki,...,pkn,, ). Adversary A
passes these keys to A’, which returns (n¢, 8,0’,1,7). Any
oracle queries made by A’ are handled exactly as before.
Now A queries its oracle C' on i. The oracle returns sk;.
Adversary A computes b = Vote(sk;, PK7,n¢c,) and
outputs (nc, ', 4,b). Adversary A’ wins Exp-IV-Int(I, A,
k) with non-negligible probability, so with non-negligible
probability b = Vote(sk;, PK1,nc, ) and A’ (and therefore
A) did not query the oracle on input j. Adversary A only
makes one additional oracle query on input i, so again, A
does not query the oracle on j. Furthermore, by Lemma [20]
sk; = sk; with only negligible probability. Therefore A wins
Exp-EV-Int(II, A, k) with probability ﬁ — negl(k). O

APPENDIX G
JCJ SCHEME

We formalize a generic construction for JCJ-like election
schemes (Figure [3). Our construction is parameterized on
the choice of homomorphic encryption scheme and sigma
protocolsF‘E] The specification of algorithms Setup, Register
and Vote follow from our informal descriptions ( The
tallying algorithm performs the following steps:

1) Remove invalid ballots: The tallier discards any ballots
from the bulletin board for which proofs do not hold.

2) Eliminating duplicates: The tallier performs pairwise
PETs on the encrypted credentials and discard any ballots
for which a test holds, that is, ballots using the same
credential are discarded ]

3) Mixing: The tallier mixes the ciphertexts in the ballots
(i.e., the encrypted choices and the encrypted credentials),
using the same secret permutation for both mixes, hence,
the mix preserves the relation between encrypted choices
and credentials. Let C; and C3 be the vectors output by
these mixes. The tallier also mixes the public credentials
published by the registrar. Let Cg be the vector output
by this mix.

4) Remove ineligible ballots: The tallier discards ciphertexts
C1[i] from Cj if there is no ciphertext ¢ in Cg such that

32For brevity, the encryption scheme’s message space m is assumed to
contain {1,...,|m|}.

33 Algorithm Setup bounds the maximum number of voters to a polynomial
in the security parameter to ensure that private voter credentials do not collide,
with overwhelming probability.

34JCJ permits revoting; ballots are removed in accordance with a revoting
policy [79} §4.1]. Since election schemes that permit revoting cannot satisty
our definition of universal verifiability (§[ZV-B2), we assume that the revoting
policy forbids revoting, i.e., ballots using the same credential are discarded.

a PET holds for ¢ and Cz[i], that is, ballots cast using
ineligible credentials are discarded.

5) Decrypting: The tallier decrypts the remaining encrypted
choices in C; and proves that decryption was performed
correctly. The tallier identifies the winning candidate from
the decrypted choices.

The Verify algorithm checks that each of the above steps has
been performed correctly.

Lemmata 2TH23] demonstrate that generalized JCJ is a
construction for election schemes.

Lemma 21. Suppose T, 31, 3o, X3, ¥4, X5, X6 and H satisfy
the preconditions of Figure|3| We have JCJ(T', X1, X9, X3, Xy,
Y5, X6, H) satisfies Correctness.

Proof. Our proof is by induction on the number of ballots
npg. We start with the base case, ng = 1. For all k, n¢, and
B e{l,...,nc}, we have

(PK7,SKT,mp,mc) « Setup(k);

(pk, sk) < Register(PK 7, k);

b < Vote(sk, PK 1,nc, B, k);

Y[B] < Y[B] +1;

L« {pk};

BB « {b};

(X, P) « Tally(PK+, SK 7, BB, L, nc, k);

Assume no < me (otherwise, we trivially satisfy correct-
ness). Hence, we need to show X[f] = 1 and X[i] = 0
for all ¢ # (. By definition of Setup, we have PK1 =
(pkp,m,p) and mec = |m|. By definition of Vote, we
have b = (c1,¢2,0,7), where ¢; = Enc(pkp, B;r1), c2 =
Enc(pky, sk;ra), o = ProveCiph((pky,c1,{1, ...,nc}),
(8,71)), and 7 = ProveBind((pkp,c1,c2), (8,71, sk,72)).
Since 5 € {1, ...,n¢c} and ne < |m|, we have /3 is a message
in I'’s message space

e Remove invalid ballots: This involves checking the proofs
o and 7. Since they were honestly computed, they verify
with overwhelming probability.

e Remove duplicate ballots: Tally would check here if there
are multiple ballots computed using the same secret key.
Since there is only one ballot, this check passes trivially.

e Mixing: Tally mixes the ballots. Since there is only one
ballot, Tally will just re-encrypt the ballot. Let the re-
encryptions of b[1] and b[2] be b'[1] and ' [2], respectively.
This is done honestly, so &’[1] will still be an encryption
of 4 and ¥'[2] will still be an encryption of sk.

e Remove ineligible ballots: As mentioned, b'[2] is still an
encryption of sk, which is a valid secret key, so the ballot
is not eliminated.

e Decrypting: Finally, Tally computes 3’ +—
Dec(pkp, SK1,b'[1]). Again, since b'[1] is still an
encryption of 3, we have 8’ = 3. Tally then increments
X[5] by 1.

Since we now have X[3] = 1 and X[i] = 0 for all i # 3, we
have that JCJ satisfies correctness when ng = 1.



Fig. 3 Generalized JCJ

Suppose T' = (Gen, Enc, Dec) is a multiplicatively homomorphic asymmetric encryption scheme with a message space over
Z, for some integer m determined by the security parameter, ¢ is an identity element of I'’s message space with respect to ©,
31 proves correct key construction, X5 proves plaintext knowledge in a subspace, 33 proves conjunctive plaintext knowledge,
34 proves correct decryption, X5 is a PET, X¢ is a mixnet, and  is a hash function. Let FS(X1, H) = (ProveKey, VerKey),
FS(X2,H) = (ProveCiph, VerCiph), FS(35,H) = (ProveBind, VerBind), FS(X4, H) = (ProveDec, VerDec), FS(X5,H) =
(ProvePET, VerPET), and FS(Xg, H) = (ProveMix, VerMix). We define generalized JCJ JCJ(T, 31, X0, X3, 3y, X5, 36, H) =
(Setup, Register, Vote, Tally, Verify) as follows.

o Setup(k). Select coins 7, compute (pk;,skr,m) < Gen(1¥;7);p < ProveKey((1*, pky,m), (skp,7)); PK+ <+

(kaama p)v mg < |m

, and output (PK 7, skr, poly(k), m¢).

o Register(PK 7, k). Parse PK r as (pk,,m, p), outputting (L, 1) if parsing fails or VerKey((1*, pk,, m), p) # 1. Compute
d < m; pd < Enc(pky,d) and output (d, pd).

e Vote(d, PK7,nc, B3, k). Parse PK 7 as a vector (pks,m, p), outputting L if parsing fails or VerKey((1¥, pk,m), p) #
VB &{1,....,nc}V{1,...,nc} € m. Select coins r1 and ro, compute ¢; < Enc(pk,, 8;71); ca < Enc(pkp,d;ra);0 +
ProveCiph((pkp,c1,{1,...,nc}), (B,r1)); T < ProveBind((pky, c1,¢2), (8,71, d,r2)) and output ballot (c1, o, 0, 7).

e Tally(PK,skr, BB, L,nc, k). Initialize vectors X of length nc and P of length 9. Parse PK 1 as (pk,, m, p). Compute
for 1 < j < n¢ do X[j] «+ 0. Proceed as follows.

1y

2)

3)

4)

5)

Remove invalid ballots: Let {b1,...,b;} be the largest subset of BB such that for all 1 < ¢ < £ we have b; is a vector of
length 4 and VerCiph((pk,, b;[1],{1,...,nc}), b:[3]) = 1 AVerBind((pk, b;[1],b:[2]), b;[4]) = 1. If {by,...,be} =0,
then output (X, P).

Eliminating duplicates: Initialize Pgup1 as a vector of length £. For each 1 < i < /, if there exists o and j €
{1,...,i—=1,i+1,...,¢} such that ¢ < ProvePET ((pk, b;[2],0;[2],1), skr) and VerPET ((pk, b;[2],b,[2],1),0) =
1, then assign Pqupi[i] < (0); otherwise, compute o; < ProvePET((pky,b;[2],b;[2],0), skr) for each j €
{1,...,i—=1,i+1,...,£} and assign Pqupili] < (01,...,0i-1,0i41,...,0¢). Let BB be the empty vector and
compute for 1 < i < ¢ A |Pqupifi]] = ¢ —1 do BB + BB || (b;), where BB || (b;) denotes the concatenation of
vectors BB and (b;), i.e., BB || (b;) = (BB[1],...,BB[|BB]], ;).

Mixing: Suppose BB = (bllv"'vbiBB|)' Select a random permutation x on {1,...,|BB|}, initialize C;, Ca,
ri and rp as vectors of length |BB|, and fill r; and ro with random coins. Compute for 1 < ¢ <

IBB| do Ci[x(i)] + bi[1] ® Enc(PK7,e;r1[i]); Calx(i)] < bi[2] @ Enc(PKr,e;r2fi]) and Ppiz1
Provel\/lix((ka,(b'l[l],...,bTBB‘[l]%Cl)’(rl,x));Pmmg — Provel\/lix((ka,(b’l[Q],...,biBBI[Q]),Cz),(rz,X)).
Similarly, select a random permutation X’ on {1,...,|L|}, initialize Cz and rz as vectors of length |L|, fill
rz with random coins, and compute for 1 < ¢ < |L| do Cj3[x'(i)] < L[i] ® Enc(PKr,e;r3[i]) and
Priz3 < ProveMix((pky, L), (r3, x)).

Remove ineligible ballots: Initialize Pinerig as a vector of length |Cz|. For each 1 < i < |Cgl, if there exists o
and ¢ € Cgz such that 0 «+ ProvePET((pkp, Czli], ¢, 1), skr) and VerPET((pkp, Czli],c),0) = 1, then assign

Pinelig[i] < (0); otherwise, compute o; < ProvePET((pk;, Czli], Cs[j],0), skr) for each j € {1,...,|Cs|} and
assign Pineligli] < (01,...,0|c,)-
Decrypting: Initialize Pgec as the empty vector. Compute for 1 < ¢ < |Cq| A |Pineiigli]] = 1 do 8 <«

Dec(pky, sk, C1[i]); o < ProveDec((pkp, C1li], 8), skr); X[8] < X[f] + 1; Pdec + Pdec || (0).

ASSign P — (Pdupla Cl7 sz'z,la CZa Pmir,27 C37 Pmiz,Sa Pinelig; Pdec) and OUtPUt (X, P)

e Verify(PK7,BB,L,nc, X, P, k). Parse PK 7 as a vector (pkp, m,p), X as a vector of length n¢, and P as a vector
(Paupt, C1, Priz,1, C2, Priz,2, C3, Priz,3; Pinelig; Pdec), outputting 0 if parsing fails or VerKey((1%, pky,m), p) # 1.
Let m¢e = |m|. If ng > mc, then output 0. Otherwise, perform the following checks:

1)

2)

3)

4)

5)

Check removal of invalid ballots: Compute {by, ...,be} as per Step (1) of the tallying algorithm. If {b1,... by} =0
and X is a zero-filled vector, then output 1. Otherwise, proceed as follows.

Check duplicate elimination: Check that P gyp1 is a vector of length ¢ and that for all 1 < i < ¢, either: i) |Pqupi1[i]| =
1 and there exists j € {1,...,i—1,9+1,...,¢} such that VerPET((pky,b;[2],b;[2],1), Paupi1[¢][1]) = 1, or ii)
|Paupi[t]| =¢ —1and forall j € {1,...,i— 1,0+ 1,...,¢} we have VerPET((pkr,;[2],b;[2],0), Paupi[i][j]) = 1.
Check mixing: Compute BB as per Step of the tallying algorithm, suppose BB = (b],.. .,bTBB‘), and check
that VerMix((pk, (5/1[1]»---ybiBB|[1])aC1)aPmia:,1) = 1 A VerMix((pk, (bllm»'-'abeB|[2])’C2)vaiw,2) =1A
VerMix((ka, L7 (33)7 P’miz,?)) =1

Check removal of ineligible ballots: Check that Pinelig is a vector of length |Cz| and that for all 1 < 7 < |Cy|,
either: 1) |Pinetig[t]| = 1 and there exists ¢ € Cg such that VerPET((pkr, C2[i], ¢, 1), Pinenig[i][1]) = 1, or ii)
|Pinetig[i]| = |Cs| and for all 1 < j < |Cg| we have VerPET ((pkr, C2[i], Cs[j],0), Pinetig[i][j]) = 1.

Check decryption: Compute C] as follows: Cj < (); for 1 < i < |C1| A |Pineligli]| = 1 do Cj + C| || (C1[i]).
Check that there exists 31, ..., B¢y such that X[i] = [{j : 1 <j <[Cj|AB; =i}| and for all 1 <4 < [C}| we have
VerDec((pky, C4 i}, 51), Paceli]) — 1.

5
Output 0 if any of the above checks do not hold. Otherv&%se, if all the above checks succeed, output 1.




Now we assume that JCJ is correct for ng n, and
prove that it satisfies correctness for np n + 1. First,
we note that since we are only adding one more vote, and
therefore only registering one more key pair, the probability
that sk,y1 = sk; for some i € {1,...,np} is negligible,
since JCJ ensures that np is bounded by a polynomial in k
and the secret keys are just random nonces. Now it is easy to
see that the only step of Tally that we need to be concerned
about is the step in which duplicate ballots are removed. This
is because the checks performed in the other steps all pass
with overwhelming probability when the computation is done
honestly. In the step to remove duplicate ballots, we need
to make sure that there are not multiple ballots computed
using sk,y1. As we argued above, sk,4; is unique among
the secret keys, so the ballot computed using sk, 1 will not
be removed, and we will get that X = Y. Therefore, JCJ
satisfies correctness. O

Lemma 22. Suppose T, 31, X9, 33, ¥4, X5, g and H satisfy
the preconditions ofFigure We have JCJ(T', 31,39, X3, Xy,
Y5, 26, H) satisfies Completeness.

Proof. Let JCJ(T,X1,%0,%5,54,355,%6,H) = (Setup,
Register, Vote, Tally, Verify), FS(X1,H) (ProveKey,
VerKey), FS(24,H) = (ProveDec, VerDec), FS(X5, H) =
(ProvePET, VerPET), and FS(X6, H) = (ProveMix, VerMix).
Suppose k is a security parameter, BB is a bulletin board,
and nco is an integer. Further suppose (PKy,SKr) is a
key pair, mp and m¢ are integers, L is an electoral roll
(i.e., a set of public keys output by Register), and (X, P)
is a tally, such that (PK,SK7,mp,m¢) < Setup(k)
and (X, P) « Tally(PK+,SK+, BB, L,nc, k). Moreover,
suppose nc < me. By definition of Setup, there exist
coins r such that (pk,SK7,m) = Gen(1¥;7), PK1+ +
(pk,m,p), and mc |m|, where p is an output of
ProveKey((1¥, PK 7, m), (SKr,7)). Since n¢ is at most |m|,
we have that any 8 € {1,...,n¢} is in I'’s message space.
Moreover, by the definition of Tally, vector X is of length
nc and P is a vector (Paupt; C1, Pmix,1, C2, Prmiz,2, Cs,
Priz,3, Pinelig; Pdec). It follows that Verify can parse
P and X successfully. Moreover, by completeness of
(ProveKey, VerKey), we have VerKey((1%, pk,m), p) 1
with overwhelming probability. Suppose {b1,...,b;} is the
largest subset of BB satisfying the conditions given by al-
gorithm Tally. If {by,...,b;} = 0, then X is a zero-filled
vector and Verify accepts, concluding our proof. Otherwise,
we proceed by showing that checks [2)—(3) of Verify succeed:

o Check duplicate elimination. The check succeeds by com-
pleteness of (ProvePET, VerPET), namely, for all 1 <
i < £ we have either: i) |Pqupi[é]| = 1 and there exists
je{l,...;i—1,i+1,...,£} such that VerPET ((PK 1,
bi[2],b5(2], 1), Paupl1[1]) = L: or i) [Pauprli]] = £~ 1
and for all j € {1,...,s — 1,5+ 1,...,£} we have
VerPET (K7, b:[2], b;[2], 0)), Paupli][j]) = 1.

Check mixing. Suppose BB = (b1, ...,b{pp). Then by
the completeness of (ProveMix,Veerx) we have that
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VerMix((PK 7, (01[1]; - .., bigg[1]), C1), Prniz,1) = 1A
VerMix((PK 7, (V,]2],. ‘BB‘[2])702) Ppiz2) = 1A
VerMix((PK 1, L, C3) miz,3) =

Check removal of ineligible ballots. By Step (4) of Tally,
we have Pipelig is a vector of length |Cgz|. Moreover,
by completeness of (ProvePET,VerPET), for all 1 <
i < |Cz| we have either: i) |Pineligl?]| = 1 and there
exists ¢ € Cg such that VerPET((PKr, Cali],c, 1),
Pinelig[i][1]) = 1; or ii) |Pineliglé]] = |C3| and for all
1 < j < |Cg3| we have VerPET((PK 7, C2li], C3[j],0),
Pineligli][j]) = 1. It follows that the check succeeds.
Check decryption. Verify computes the set C; such
that it includes only elements c¢; of C; for which
|[Pinelig[i]] = 1. Then, by the definition of Tally and
the completeness of (ProveDec, VerDec), we have that
VerDec((PK 7, C4[i], 5:),P[9]i]) = 1 for all 1 < ¢ <
|CY|. Furthermore, in step 5 of Tally, ballots Cy[i] are
only counted for a candidate when 1 < ¢ < |Cq| A
|Pinetiglt]| = 1, which is exactly how Cj is defined.
Therefore, there exists 31, . .. 3¢ | such that X[i] = |{j :
1 <j <[CyAB; =1}

It follows that all the required checks succeed and Verify
outputs 1, concluding our proof. O

Lemma 23. Suppose T', ¥, 3o, X3, 34, X5, Xg and H
satisfy the preconditions of Figure [3| Further suppose T
is collision-free. We have JCJ(T', %1, %9, 53,34, X5, X6, H)
satisfies Injectivity.

The proof of Lemma [23]is similar to the proof of Lemma

Proof sketch. Generalized JCJ ballots contain encrypted
choices, hence, collision-freeness of the encryption scheme
ensures that distinct choices are not mapped to the same
ballot. O

Generalized JCJ can be instantiate to derive JCIJ:

Definition 29 (JCI). JCJ [|79] is JCI(T', 41,39, X3, 34, X5,
Y6, H), where T is a modified version of El Gamal [51]
invented by Juels et al. [[79, §4] that can be seen as a sim-
plified version of Cramer—Shoup [44|], ¥, is the proof of key
construction by Gennaro et al. [57], ¥4 is the conjunction [41)]
of two Schnorr proofs [[104)], X5 is the PET by MacKenzie et
al. [94], X is either the mixnet of Furukawa and Sako [54)]
or Neff [96], and H is a random oracle. Juels et al. leave ¥
and X3 unspecified.

Juels et al. [[79] do not mandate particular cryptographic prim-
itives, so Definition @] might be seen more as an instantiation
of their scheme than an exact recollection of it. We assume that
the primitives in Definition 29] satisfy the properties required
by generalized JCJ. We also assume that the sigma protocols
satisfy special soundness and special honest verifier zero-
knowledge, hence, Theorem [J] is applicable.

To show that JCJ is an election scheme, we must demon-
strate that Correctness, Completeness and Injectivity are sat-
isfied. Correctness follows immediately from Lemma [21] and



Completeness follows from Lemma [22] We show that Injec-
tivity is also satisfied.

A non-interactive proof system derived from a sigma proto-
col for proving correct key construction is sufficient to ensure
that EI Gamal is collision-free:

Lemma 24. Suppose X1 is a sigma protocol that proves
correct key construction and H is a hash function. Let FS(Xq,
H) = (ProveKey, VerKey). Further suppose for all security
parameters k, public keys pk, message spaces m and proofs
p, we have VerKey((1%, pk,m), p) = 1 implies h # 0, there
exists p, q, g and h such that pk = (p,q, g, h) and (p,q, g) are
cryptographic parameters, and m = {1,...,p—1}. It follows
that multiplicatively homomorphic El Gamal is collision-free
for mi,mo € m.

The proof of Lemma [24] is similar to the proof of Lemma [T3]

Proof. Suppose k is a security parameter, pk is a public
key, m is a message space, p is a proof, mi,mo € m are
messages and r; and rp are coins such that VerKey((1¥, pk,
m),p) =1, my ZmaVry #re, m={1,...,p— 1}, and
pk = (p,q,g,h) for some p, ¢q, g and h. Further suppose
that ¢; and ¢y are ciphertexts such that ¢; = Enc(pk, mq;7m1),
ca = Enc(pk,mao;r3), and Enc is El Gamal’s encryption
algorithm. If ry # ro, then we proceed as follows. By def-
inition of Enc, we have ¢;[1] = g™ (mod p) and co[1] = g™
(mod p). Since 1 and 7o are distinct, we have g™ # g
(mod p). (We implicitly assume that coins 7 and ro are
selected from the coin space Zg, hence, g"* = ¢ mod p
and ¢ = g¢"? mod p.) It follows that ¢; # cy. Otherwise
(r1 = 12), we have m; # mo and we proceed as follows.
By definition of Enc, we have ¢1[2] = A™ - m; (mod p)
and c2[2] = h™ - my (mod p). Since h # 0, we have
h™ -mq Z h™ - mg (mod p). O

Given that ciphertexts generated by the modified version of El
Gamal used in JCJ [79} §4] encapsulate El Gamal ciphertexts,
the proof of key construction by Gennaro et al. [57] is
sufficient to ensure that EI Gamal is collision-free:

Corollary 25. The modified version of El Gamal used in
JCJ [|79) §4] is collision-free its message space m.

The sigma protocol for proving correct key construction by
Gennaro et al. [57] does not explicitly require the suitability
of cryptographic parameters to be checked, hence, Lemma [24]
is not immediately applicable. Nonetheless, we can trivially
make the necessary checks explicit and, hence, the non-
interactive proof system derived from the sigma protocol for
proving correct key construction by Gennaro et al. is sufficient
to ensure that El Gamal is collision-free. It follows that JCJ
satisfies Injectivity, hence, JCJ is an election scheme.

APPENDIX H
PROOF: JCJ 1S VERIFIABLE

Elections schemes constructed from generalized JCJ satisfy

individual (§H-A), universal (§H-B) and eligibility (§H-C)

verifiability, hence, such schemes satisfy election verifiability
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with internal authentication (§H-D)). It follows that JCJ satisfies
election verifiability (§H-E).

A. Individual verifiability

Proposition 26. Suppose T', X1, Yo, 33, 34, X5, X6 and H
satisfy the preconditions of Figure 3} Further suppose that
T' is collision-free for its message space m and Y1 satisfies
special soundness and special honest verifier zero-knowledge.
We have JCJ(T', 331, 3o, X3, Xy, X5, X6, H) satisfies individual
verifiability.

Proof. Let JCJ(F, 21, Eg,23,24,25,26,H)=(Setup,Vote,
Tally, Verify) and FS(X1,H) = (ProveKey, VerKey). Sup-
pose k is a security parameter, PK 1 is a public key, n¢
is an integer, and B and [’ are choices. Further suppose
that (pk, sk) and (pk’, sk’) are key pairs and b and b’ are
ballots such that (pk, sk) < Register(PK 7, k), (pk’, sk) +
Register(PK 7,k), b < Vote(sk, PKr,nc,B,k), b/ +
Vote(sk', PK+,nc,8,k), b # L, and b’ # 1. By defi-
nition of Vote, we have PKy is a vector (pkp,m,p) and
VerKey((1%, pk,m),p) = 1. By definition of Vote, b[2]
and b'[2] are ciphertexts such that b[2] < Enc(pk;, sk) and
V'[2] < Enc(pkr, sk’), where sk, sk’ € m. Furthermore, the
ciphertexts are constructed using random coins—i.e., the coins
used by b[2] and &'[2] will be distinct with overwhelming prob-
ability. Since T is collision-free for m, we have b[2] # b'[2]
and b # b with overwhelming probability, concluding our
proof. O

B. Universal verifiability.

Proposition 27. Suppose T' is a homomorphic asymmet-
ric encryption scheme, X1, Yo, X3, X4, 25 and Yg, are
sigma protocols and H is a hash function such that the
conditions of Figure [B] are satisfied. Further suppose that
T' satisfies IND-CPA and %1 and Xg satisfy special sound-
ness and special honest verifier zero-knowledge. We have
JCI(T, 31,39, 33, X4, X5, X6, H) satisfies universal verifia-
bility.

The proof is similar in structure to the universal verifiability
proof for Helios (§D-B)): we use the definition of the verifica-
tion algorithm to construct the tally X given by the adversary,
and then show that X is equal to the correct tally.

Proof. Suppose that an execution of Exp-UV-Int(II, A, k)
computes
(PKT,nv) — A(k‘),
for 1 <i <ny do (pk,, sk;) < Register(PK 1, k)
L« {pkla tee 7pknv};
M < {(pky, sk1), ..., (Pkny > Skny )}
(BB,n¢, X, P) + A(M);
Y < correct-tally(PK 7, BB, M,nc, k);
such that Verify(PK, BB,n¢, X, P, k) = 1. The JCJ verifi-

cation algorithm checks the proof p in PK7 = (pkp, m,p),
so VerKey((1*, pkr,m),p) = 1 and by simulation sound



extractability we are assured that pk, was honestly generated,
i.e., there exists r and SK; such that (pkp, SK7,m) =
Gen(1*; 7). We now look at each step in the Verify algorithm.

o Check removal of invalid ballots: Let {by,...,bs}

be the largest subset of BB such that for all
1 < ¢ < /¢ we have b; is a vector of length
4 and VerCiph((pky,b;[1{1,...,nc}),bi[3]) 1A
VerBind((pkp, b;[1],b;]2]),b;[4]) = 1. If this set is
empty, then Verify would only accept if X[i] 0
for all 1 < ¢ < ng and P = L. Since the set is
empty, no ballots b were posted to the bulletin board
for which VerCiph((pkr, b;[1],{1,...,nc}),bi[3]) = 1A
VerBind((pk, b;[1], b;:[2]), b;i[4]) = 1. By the complete-
ness of the zero knowledge proofs, if the ballots were
outputs of the Vote function, then they would verify.
Therefore, no ballots on the bulletin board were the
output of the Vote function, so we will have that Y
is also a vector of zeroes. Thus we would have that
X =Y and conclude our proof. Now let’s assume that
{b1,...,be} #0.
We must have for all choices 8 € {1,...,n¢}, secret
keys sk such that (pk, sk) € M, coins r, and ballots b =
Vote(sk, PKr,nc, 8,k;r) that b & BB\{by,...,bs}
with overwhelming probability, since otherwise we would
have a contradiction: {by, ..., b} is not the largest subset
of BB satisfying the conditions of the Tally algorithm.
Therefore, we must have that

correct-tally(PK r, M, BB, n¢, k)

= correct-tally(PK+, M, {by,...,bs},nc, k) ()

o Check duplicate elimination: Next, the verification
algorithm  checks that duplicate votes  were
properly eliminated, i.e., that either |Pgupifi]| =
1A 35 e {l,...,i—1,i+1,...,¢} such that
VerPET ((pkrp, b:[2],6;[2]), Paup[i][1],1) = 1 or

[Paupifi]] = ¢ -1 AVje{l,...,i—1,i+1,...,n}
such that VerPET ((pk, b;[2],5;[2],0), Paup1[¢][j]) = 1.
Let BB be constructed as in Step (2) of the JCJ tallying
algorithm. By the simulation sound extractability of the
Paupi[i], we are assured that there are no duplicate
votes in BB.

Check mixing: Now the ballots in BB are permuted and
re-encrypted using a mixnet. While permuting the ballots
isn’t necessary for verifiability, the associated proofs
are necessary because they show that the re-encryption
was done properly (for example, they ensure that the
encrypted ballot was multiplied by an encryption of the
identity element, and not some other group element that
might change the vote). Let C'; denote the list of mixed
re-encryptions of candidates, Cs denote the list of mixed
re-encryptions of voters’ secret keys from the ballots, and
C'3 denote the mixed list of encryptions of voters’ secret
keys. The permutation used to generate C' is different
from the permutation used to generate C; and Cs, but this
isn’t important to the verifiability of the scheme. We have
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that VerMix((pkp, (b1[1], ..., b)’BB| [1]),C1), Piz1) =
LA VerMix((ka, (bll [2]7 AR b|BB| [2])7 C2)7 Pmi%?)
1 A VerMix((pky, L, C3), Priz,3) = 1. By simulation
sound extractability, we have that each C; does indeed
contain re-encryptions of the original lists in BB.
Check removal of ineligible ballots: Next, the verification
algorithm ensures that ineligible ballots are removed
properly. The verification algorithm checks that each PET
in P[8] = Pipelig is valid. Let C{ C C; be the set of
C4[i] € C4 for which |Pjyepi4| = 1 and there exists ¢ €
C3 such that VerPET ((pky, C2[i], ¢, 1), Pinenig[i][1]) =
1. In other words, Cf is the set of encryptions of
candidates generated using a valid voter’s secret key.
Check decryption: Finally, the verification algorithm
checks the proofs that all of the ballots in C] are properly
decrypted. The verification algorithm outputs 1, so by
simulation sound extractability we are assured that the
multiset of candidates given by decrypting the ballots
in C7 is correct. We will call this multiset Cpingi-
Finally the verification algorithm checks that this multiset
corresponds to the vector X.

We can see that Cpy,g satisfies the following properties.
First, every element § in Cpy,g corresponds to a ballot
b € BB which was generated using Vote with a valid
voter’s secret key. This is ensured by steps (1), (3), and
(4) of the verification algorithm. Second, for every g €
Crinai, the ballot corresponding to this 5 was the only one
constructed under its particular secret key, i.e., (where b is
the ballot corresponding to 8) -3/, 8,7 : bV € BB\
{b} ANV = Vote(sk, PK1,nc,B',k;r’")}. This is ensured
by steps (2) and (3) of the verification algorithm. Therefore,
we have that each 8 € Cpjpe corresponds to a ballot
in authorized(PK , BB, M,n¢, k). Finally X[5] = k iff
3=kB € Cping. This is ensured by step (5) of the veri-
fication algorithm. Since these are the exact properties that
define correct-tally(PK 7, M, {b1,...,b¢},nc, k), we must
have that X =Y. O

C. Eligibility Verifiability

We proceed as follows. First, we derive an IND-1-
CPA encryption scheme from generalized JCJ (§H-CI)). Sec-
ondly, we introduce an experiment that is equivalent to
Exp-EV-Int-Weak for JCJ (§H-C2). Finally, we prove that JCJ
satisfies our new experiment (§H-C3)), using the IND-1-CPA
encryption scheme.

1) Encryption scheme from generalized JCJ:

Definition 30. Suppose II = (Gen, Enc,Dec) is an asym-
metric encryption scheme, Y1 proves correct key construc-
tion, X3 proves conjunctive plaintext knowledge, and H is
a random oracle. Let FS(X1,H) = (ProveKey, VerKey) and
FS(Xs,H) = (ProveBind, VerBind). We define 11,0, (11, ¥4,

Y3, H) = (Gen',Enc’, Dec’) as follows:
o Gen'(1%;7) : Compute (pky, SK1,m) < Gen(1%;r);
p < ProveKey((1*, PK+,m),(SK7,7)); PK7 <



(kavmap); m’ {(m17m2) ‘ mi, Mg € m} Output
((PKTv k)a SKTvm/)'

Enc'(pk,m) : Parse m as a vector (B3,d), pk as a
vector (PKT,k), and PK+ as a vector (pkrp,m,p),
outputting L if parsing fails. Select coins r1 and ro and
compute ¢y < Enc(pky, B;7r1); co < Enc(pkp,d;ra);
T < ProveBind((pky,c1,c2), (B,71,d,72)). Output
(Cl, Co, T).

Dec'(pk, sk, c) : Parse c as (c1,c2,7), pk as (PKT,k),
and PK 1 as (pkp,m, p), outputting L if parsing fails or
VerBind((pky, c1,¢2),7) # 1. Compute 3 < Dec(pkp,
sk, c1); d < Dec(pkp, sk, ca) and output (53, d).

The key generation algorithm Gen’ outputs a public key
(PK7,k), where PK+ = (pkp,m, p). Parameters m, p, and
k are used in our proof of eligibility verifiability, but are not
required by the encryption scheme.

Proposition 28. I1;¢,(I1, X, X3, H) is an asymmetric en-
cryption scheme satisfying IND-1-CPA, where 11, 31, X3 and
H satisfy the preconditions of Definition

Proof. The proof that this scheme satisfies IND-1-CPA is
adapted from that of [21, Theorem 5.1]. We will show that
if there is an adversary A’ that can win the IND-1-CPA
game for the scheme, then there is another adversary A that
can win the IND-CPA game for the following scheme: Let
I' = (Gen,Enc,Dec) be an asymmetric encryption scheme
satisfying IND-CPA. Define I" = (Gen’, Enc’, Dec’) as fol-
lows:

o Gen'(1%;7) Compute (pk, sk,m) <« Gen(1¥;7);
p « ProveKey((1%, pk,m), (sk,7)); PK 1 < (pk,m, p);
pk' = (PK7,k); m' < {(m1,msa) | mi,ma € m}, and
output (pk’, sk, m’).
Enc’(pk,m) : Parse m as a vector (mg,my), pk as
(PK7,k), and PK+ as (pk’,m,p), outputting L if
parsing fails. Compute ¢y < Enc(pk’,mq); c1 +
Enc(pk’,m1), and output (co, c1).
Dec'(pk, sk,c) : Parse c as a vector (cp,c1), pk as
(PKr,k), and PK7 as (pk',m,p), outputting | if
parsing fails. Compute mqo < Dec(pk’, sk,co); my +
Dec(pk’, sk, c1), and output (mg,m1).
It is straightforward to see that this scheme satisfies IND-CPA.

Now we begin the reduction. Let .4’ be an adversary that
wins the IND-1-CPA game against I1;¢;(I1, X1, X3, H) with
non-negligible probability. We will construct an adversary A
that wins the IND-CPA game against the I defined above with
non-negligible probability. A is first given a public key pk,
where pk = (PKr,k) and PK7 = (pk’,m,p). A forwards
pk to A’. A’ may make queries to its random oracle. .4
will simulate the random oracle and keep a list 4 of all
previously asked queries. If A’ makes a query for a value
already in H, A responds with a value consistent with the
list. If A’ makes a query for a new value, A chooses a value
uniformly at random from the range of the random oracle and
adds the query/response pair to H. We will denote by H(x)
the response y such that (z,y) is in H, and L if no such
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query/response pair is in H.

Next A" will output two messages mg, m; of the form
(8,d). A outputs mg, m; and receives a challenge ciphertext
¢ = (c§,cf). A then picks a challenge chal* at random
from the challenge space. In order to generate the proof of
conjunctive plaintext knowledge that A’ expects, A will use
the simulator Sim for the sigma protocol associated with
ProveBind. This simulator exists due to the special honest
verifier zero knowledge property of the sigma protocol. A runs
Sim((pk', ¢}, ct), chal*) to obtain the simulated proof 7% =
(comm*, resp*), and adds the pair ((pk’,cy,ct)||comm*,
chal*) to H. If there is already an entry corresponding to the
query (pk',cj, ci)||comm* in H, A aborts with “Error 17. A
then gives (¢, ci, 7*) to A’

A’ will next output its vector of decryption queries c. Let
|c| = ¢. Foreach i € {1,...,¢}, A will obtain the response to
the query c[i] using the following procedure. First, A checks
that c[i] is a valid ciphertext, i.e, that c[i] = (¢?, ¢}, 7;) where
7; = (comm;, resp;) such that VerBind((pk’, c¥, c}), (comm,
H((pk', 2, c})||comm;)), resp;) 1. If there is no entry
(z,y) € H such that x = (pk',c?,c})||comm;, A adds it
as if A’ had queried its random oracle on that value. If these
conditions do not hold or c[i] = (c{,c},7), the response
for c[i] will be L. Now A checks to see where A" queried on
(pk', 2, ch)||comm,. If A’ never made such a query, A aborts
with “Error 2”. A simulates a new copy of A’ up to the point
of that query, but this time responds with a new, uniformly
random value. All other queries are answered as they were
in the “main” run of A’. A continues the simulation until

A’ outputs ¢’. If ¢’ contains an entry (c,cj,7;) such that
) = d,¢c; = ci and comm; = comm;, then A uses the

special soundness extractor for the sigma protocol to obtain
the witness w; for the statement. This witness consists of the
messages and random coins used to generate the ciphertexts.
A uses this witness to answer the decryption query in the
“main” run. Finally, A’, will output a bit b, which A outputs
as well.

The remainder of the proof is almost exactly the same as
that of [21, Theorem 5.1], and so is omitted here. O

2) Variant of Exp-EV-Int-Weak:

Exp-EV-1-Int(I1, A, k) =

1 (PK7,SK1,mp,m¢) < Setup(k);

2 (pk, sk) « Register(PK 1, k);

3 Ruld + 0

4 (n07ﬁ7b) — AR(PKTvpka k)s

s if 3r : b = Vote(sk, PKr,n¢, B, k;r) Nb#£ L
Ab ¢ Ruld then

6 | return 1

7 else

8 | return 0

Lemma 29. Let 11 be Generalized JCJ, where the encryption



scheme 1" satisfies IND-CPA. Then we have

VA 3u Vk . Succ(Exp-EV-1-Int(T1, A, k)) < u(k)
& VA 3u’ VE' . Succ(Exp-EV-Int-Weak(IT, A", k")) < p/(K'),

where A and A’ are PPT adversaries, |1 and 11’ are negligible
functions, and k and k' are security parameters.

The forward implication is required by Proposition [30] and
we provide a formal proof below. A proof of the reverse
implication is straight-forward and we omit our formal proof.

Proof. We will show that if an adversary wins
Exp-EV-Int-Weak, then there exists an adversary that
wins Exp-EV-1-Int. Let A’ be the adversary that wins
Exp-EV-Int-Weak with non-negligible probability. We will
construct the adversary A for Exp-EV-1-Int. The challenger
first computes (PK 7, SK 7, mp, m¢) < Setup(k) and (pk,
sk) < Register(PK1,k). A is given as input (PKr, pk, k)
and forwards (PK 7, k) to A’. A’ outputs ny .

Now A’ may make some oracle queries. .4 will maintain
a list H of (i, pk, sk’) tuples. A”’s first oracle, C, needs to
return secret keys associated with the pk,. When A receives
a query C(i), A checks if (i, pk}, sk;) € H. If so, A returns
sk;. Otherwise, A computes (pk}, sk;) < Register(PK 1, k),
adds (i, pk., sk’) to H, and returns sk;. Again by the IND-
CPA property of the encryption scheme, A’ cannot tell that
sk’ does not actually correspond to pk,. A’’s second or-
acle, R can be queried on inputs (i, 3,n¢), on which it
returns Vote(sk;, PK1,nc, 8, k). If A receives the query
R(i,3,nc), it checks if (i, pk;, sk.) € H. If so, A computes
b = Vote(sk,, PKr,Q,nc, B, k) and returns b. Otherwise, .4
computes (pk’, sk) < Register(PK ,k), adds (i, pk., sk’)
to H, then computes b = Vote(sk, PK1,nc,B,k) and
returns b. Again by the IND-CPA property of the encryption
scheme, A’ cannot tell that the ballots b he receives were
computed with a secret key that does not correspond to pk;.
Finally, A’ outputs (n¢,(,4,b), and A outputs (nc,[,b).
Clearly, A has the same success probability as A’, so A wins
Exp-EV-1-Int with non-negligible probability. O

3) Eligibility Verifiability:

Proposition 30. Suppose T' is a homomorphic asymmetric
encryption scheme, X1, Yo, X3, 24, 25 and Xg, are sigma
protocols and H is a hash function such that the conditions of
Figure |3| are satisfied. Further suppose that 1" satisfies IND-
CPA. We have JCJ(T', X1, X9, X3, X4, X5, X6, H) satisfies eli-
gibility verifiability.

Proof. Let 110y (Gen’,Enc’, Dec’) be defined as above.
Let A’ be an adversary that wins the Exp-EV-1-Int game. We
will construct the adversary A that wins the IND-1-CPA game
with non-negligible advantage. The challenger first generates
(PK,SK,m) < Gen'(k), where PK = (PKy,k) and
PK+ = (pkp,m,p), and gives (PK7,k) to A as input.
A runs Register(PK 1, k) twice to get (pko, sko), (pk1, ski1)
and sets mo = (1,sko),m1 = (1,sk1). A then outputs
(mg, mq). The challenger picks a bit b at random and gives
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¢ = Enc(PK,m;) to A. We have ¢ = (cy,c2,7), where
ca = Enc(pkyp, sky). Now A begins to interact with A" by
giving (PK 1, ca,k) to A'.

At this point A’ may call its oracle R. If A receives a query
R(B,n¢), it will construct = <« Vote(sko, PK1,nc, B, k)
and return . We have that = (Enc(pk, ), Enc(pk, sko),
0,7), where ¢ and 7 are proofs of plaintext knowledge in
a subspace and conjunctive plaintext knowledge, respectively.
By the IND-CPA property of Enc, A’ can’t distinguish be-
tween encryptions of skg and sk;. Therefore we can construct
x using sko even if the secret key corresponding to cg is
actually sk.

A" will then output (nc,pS3,b*), where b*
(ct,c3,0%,7*). A" wins with probability ﬁ for
some polynomial p, so with probability ﬁ

we have

that C1 - Enc(kavﬂ;T.l)vCQ - Enc(kaaSkb;Tﬁ)v
o = ProveCiph((pkr,c1,{1,...,nc}), (B8,71)), and
7* = ProveBind((pkr,ci1,c2), (8,71, skp,72)). In order to

ensure that we get a ballot of this form from A’ with high
enough probability, A repeats the above interaction with A’
p(k) times to obtain (nk,A",07),...,(nA", B0 br ).
A outputs (b3[1],b7[2],b[4)), .-, (b;(k)[l],b;(k) [2],b;(k) 4)),
and  receives  Dec(PK, SK, (bi[1],b7[2],b%[4])), ..,
Dec'(PK,SKT,(b;(k),b;(k)[Q],b;(k)[él])). If there exist i, j
such that Dec’(PK,SKr,(b[1],b;[2],b[4])) = (B sko)
and Dec'(PK,SKr, (b3[1],b3[2], 0% [4])) (87, sk1),
or there exists no 4 such that Dec (PK,SKr,
(071,67 (20,67 [4])) = (B",sko) or (8",sky), then A
outputs a random bit. Otherwise, if there exists ¢ such
that Dec'(PK, SK, (b;[1],0; (2], b7 [4])) (B*, sko).
then A outputs 0. Likewise, if there exists i such that
Dec'(PK, SKr, (b7[1],b:[21,b74]) = (8", sk1). then A
outputs 1.

We now argue that 4 can determine the correct bit b with
non-negligible advantage.

There are three possible events that can occur in a run of A.
The first possibility is that A’ fails on each of its p(k) runs so
that A has to guess. This occurs with probability (1— ﬁ)p(k).
The second event is that A’ does succeed in one of its runs,
but on a different run it outputs

b= (Enc(PK,f;r1),
Enc(PK T, sk_p);72),

PFOVSCiph((PKT, C1, {17 s 7”0})7 (63 Tl))a
ProveBind((PK 7, c1,¢2), (8,71, sk(1-p),T2)))-

However, because sky and sk; are chosen randomly, the
probability of this occurring is negligible. Finally, the third
possibility is that A" succeeds in at least one of its runs. This
occurs with probability S-7%) (1 — 509 (i )- In the first
two events, A guesses and wins with probability %, and in
the third event .4 wins with probability 1. Therefore, the total
probability that A wins is (ngg)*l (1— ﬁ)l(ﬁ)) +1(1-
ﬁ)”(’“) + u(k), for some negligible function /.
We have that this equation is equal to:



= 5l 2 (= ) 51— )
+3u(k) X
— ”(l’f)(?k(f) — (1= A)PP®p(k)) + (1 - ﬁk))p(k)
tou
1 2 (1— A<)P®) 4 L1 — 2yp(k) 4 L(k)
%) 2 03 2k
=301 = 5" + gu(k)

-

he advantage of this adversary, we

subtract % from this:
_ 1

1= 30— P+ L) - &
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L_)P(k) converges to

1
o
3 —a(l—
As k gets large, (1 — G
goes to 0, so the entire equation converges to % — i This is
non-negligible.
Combining this reduction with Lemma [29] we have
that if Il;oy; satisfies IND-1-CPA, then JCJ satisfies
Exp-EV-Int-Weak.

L and p(k)

O

D. Election verifiability

By Propositions [26] 27, & [30] election schemes constructed
from generalized JCJ satisfy election verifiability with internal
authentication:

Corollary 31. Suppose T, 31, Yo, 33, X4, 25, Xg and H
satisfy the preconditions of Figure 3} Further suppose that
T' satisfies IND-CPA and is collision-free, 31 and g satisfy
special soundness and special honest verifier zero-knowledge,
and H is a random oracle. We have JCJ(T', X1, Y0, 33, Xy,
Y5, X6, H) satisfies election verifiability with internal authen-
tication.

E. Proof: Theorem

Proof of Theorem 5] We know that I satisfies IND-CPA, and
by Corollary 25| T is also collision-free. Therefore the proof
follows from Corollary [31I] subject to the applicability of
Theorem [J to the mixnet and sigma protocol used by JCJ
to prove correct key construction. O

APPENDIX I
JUELS ET AL. DEFINITIONS

Juels et al. [79, §2] define an election scheme as a tuple
of (Register, Vote, Tally, Verify) probabilistic polynomial-time
algorithms:

o Register, denoted (pk,sk) < Register(SKg,1, k1), is
executed by the registrars. Register takes as input the
private key SK of the registrars, a voter’s identity 4,
and security parameter k;. It outputs a credential pair
(pk, sk).

Vote, denoted b <+ Vote(sk, PK1,nc, 3,ks), is exe-
cuted by voters. Vote takes as input a voter’s private
credential sk, the public key PKy of the tallier, the
number of candidates ng, the voter’s choice (3, and
security parameter ko. It outputs a ballot b.

Tally, denoted (X, P) < Tally(SK 7, BB, nc, {pk;}.¥},
k3), is executed by the tallier. Tally takes as input the
private key SK 7 of the tallier, the bulletin board BB,
the number of candidates n¢, the set containing voters’
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public credentials, and security parameter k3. It outputs
the tally X and a proof P that the tally is correct.
Verify, denoted v <+ Verify(PKg, PK7,BB,n¢, X,
P), can be executed by anyone to audit the election.
Verify takes as input the public key PK % of the registrars,
the public key PK 7 of the tallier, the bulletin board BB,
the number of candidates n¢, and a candidate proof P
of correct tallying. It outputs a bit v, which is 1 if the
tally successfully verifies and 0 on failure.

The above definition fixes an apparent oversight in JCJ’s
presentation: we supply the registrars’ public key as input to
the verification algorithm, because that key would be required
by Verify to check the signature on the electoral roll.

Juels et al. [79} §3] formalize correctness and verifiability to
capture their notion of election verifiability. We rename those
to JCJ-correctness and JCJ-verifiability to avoid ambiguity.
For readability, the definitions we give below contain subtle
differences from the original presentation. For example, we
sometimes use for loops instead of pattern matching.

JCJ-correctness asserts that an adversary cannot modify
or eliminate votes of honest voters, and stipulates that at
most one ballot is tallied per voter. Intuitively, the security
definition challenges the adversary to ensure that verification
succeeds and the tall does not include some honest votes
or contains too many votes. The definition of JCJ-correctness
fixes apparent errors in the original presentation: the adversary
is given the credentials for corrupt voters and distinct security
parameters are supplied to the Register and Vote algorithms.
An implicit assumption is also omitted: {f;};cy\1r is a
multiset of valid votes, that is, for all 5 € {f3;};cy\1» We have
1 < B < ne. Without this assumption the security definition
cannot be satisfied by many election schemes, including the
election scheme by Juels et al.

Definition 31 (JCJ-correctness). An election scheme 11
(Register, Vote, Tally, Verify) satisfies JCJ-correctness if for
all probabilistic polynomial-time adversary A, there exists
a negligible function u, such that for all positive inte-
gers ng and ny, and security parameters ki, ks, and
k3, we have Succ(Exp-JCJ-Cor(II, A, nc,ny, ki, ko, k3)) <
w(ky, ka, k3), where Exp-JCJ-Cor is defined as follows.{ﬂ

Exp-JCJ-Cor(IT, A, nc, nv, ki, ka, k3) =

35 Juels et al. translate tallies X into a multisets (X) representing the tally

as follows: (X) = U;<;<x{J,---»3}-
<5<
X[7] times
36We write pu(k1, k2, k3) for the smallest value in {u(k1), u(k2), u(ks)}
(cf. [79) pp45]).



V<~ {1,...771\/};
for i € V do (pk,, sk;) < Register(SK g, i, k1)
V' A({pk; }%)s
for i € V\ V' do 5; < A();
BB + {Vote(ski, PKT, nce, ﬁi, k2)}i€V\V’;
(X, P) « Tally(SK 7, BB, n, {ph, 11y ks ):
BB + BBU .A(BB, {(pki, Ski)}ieVﬁV’);
(X', P') « Tally(SK 7, BB, nc, {pk; };¥1. ks);
if Verify(PK », PK 7, BB,nc, X', P') = 1
A ({Bibiewr € (X V [(X))] = [(X)| > [V']) then
| return 1
else
| return 0

R R B Y N L

11

-

The JCJ-correctness definition implicitly assumes that the
tally and associated proof are honestly computed using
the Tally algorithm. By comparison, the definition of JCJ-
verifiability (Definition [32) does not use this assumption,
hence, JCJ-verifiability is intended to assert that voters and
auditors can check whether votes have been recorded and tal-
lied correctly. Intuitively, the adversary is assumed to control
the tallier and voters, and the security definition challenges
the adversary to concoct an election (that is, the adversary
generates a bulletin board BB, a tally X, and a proof of
tallying P) such that verification succeeds and tally X differs
tally X’ derived from honestly tallying the bulletin board BB.
It follows that there is at most one verifiable tally that can be
derived.

Definition 32 (JCJ-verifiability). An election scheme 11 =
(Register, Vote, Tally, Verify) satisfies JCI-verifiability if for
all probabilistic polynomial-time adversary A, there ex-
ists a negligible function u, such that for all positive
integers nc and ny, and security parameters ki and
ks, we have Succ(Exp-JCJ-Ver(II, A, nc,ny, k1, ko, k3)) <
wu(k, ka, ks), where Exp-JCJ-Ver is defined as follows:

Exp-JCJ-Ver(I, A, nc,ny, k1, ka, k3) =

1 for 1 <i < ny do (pk,, sk;) < Register(SKr, 1, k1)

2 (BBvX’ P) — A(SKTa {(pki’ Skl>}:t:vl)s

3 (X', P') « Tally(SK 7, BB, nc, {pk;}¥,, ks);

4 if Verify(PK», PK 7, BB,nc,X,P) = L A X # X'
then

s | return 1
¢ else
7 L return 0

APPENDIX J
PROOFS: JUELS ET AL. ADMIT ATTACKS

This appendix contains proofs demonstrating that the def-
inition of election verifiability by Juels et al. [79] admits
collusion and biasing attacks (§VI). We have reported these
findings to the original authors [24], [[73].
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A. Proof: Proposition [6]

Suppose II (Register, Vote, Tally, Verify) is an elec-
tion scheme satisfying JCJ-correctness and JCJ-verifiability.
Further suppose Stuff(IL, 3, k) (Register, Vote, Tallyg,
Verifyg), for some integers 5, € N. We prove that
Stuff(II, 5, k) satisfies JCJ-correctness and JCJ-verifiability.

We show that Stuff(II, 8, k) satisfies JCJ-correctness by
contradiction. Suppose Succ(Exp-JCJ-Cor(Stuff(IL, 3, ), A,
ng, ny, ki, ka, ks)) is non-negligible for some k1, ko, k3, nc,
ny, and A. Hence, there exists an execution of the experiment

Exp-JCJ-Cor(Stuff(I1, 8, k), A, nc, ny, k1, ka, k3)

that satisfies

Verifyg(PKr, PK7,BB,n¢, X', P') =1
A ({Bi}ievr € (X)) V(X)) = [(X)] > V')
with non-negligible probability, where {3;};cy\y is the set
of honest votes, (X, P) is the tally of honest votes, (X', P’)
is the tally of all votes, V' is a set of corrupt voter identities,
and BB is the bulletin board. Further suppose BB is the

bulletin board BB before adding stuffed ballots. By definition
of Tallyg, there exist computations

(Y7 Q) <~ Ta”y(SKTa BBO7 nc, {pkL};ﬂ:vl, k3)
and

(Y, Q') « Tally(SK 7, BB,nc, {pk, } V1, k3)

such that X = Add(Y, 8, k), X' = Add(Y’, 3, k), and P’
Q’. Since k € N, we have (Y’) C (X'). Moreover, [(X)| =
(Y)| + x and [(X')| = |(Y’)| + &, hence,

(YY) = ()] = [(X)] = [(X)]

By definition of Verifyg and since Y’ = Sub(X’, 8, k), there
exists a computation

v « Verify,(PK g, PK 7, BB,nc,Y', Q")

such that v = 1. It follows that

Verify(PK g, PK+, BB, nc, Y, Q') =1
A ({Bitiewa £ (Y) VXY = [(Y)] > V')

with non-negligible probability and, furthermore, we
have Succ(Exp-JCJ-Cor(Il, A, nc,ny, k1, ke, ks)) is non-
negligible, thereby deriving a contradiction.

We show that Stuff(II, 8, k) satisfies JCJ-verifiability by
contradiction. Suppose Succ(Exp-JCJ-Ver(Stuff(IL, 3, ), A,
ng,ny, ki, ks, k3)) is non-negligible for some k1, k3, nc,
ny, and A. Hence, there exists an execution of the experiment
Exp-JCJ-Ver(Stuff(IL, 8, k), A, nc, nv, k1, k2, k3) which sat-
isfies

Verify(PK», PK+, BB,nc,X,P) = 1 AX # X'

with non-negligible probability, where (BB, X, P) is an elec-
tion concocted by the adversary and (X', P’) is produced by



tallying BB. By definition of Tallyg, there exists a computa-
tion

(Y, Q') «+ Tally(SK 7, BB,nc, {pk,; } ¥, k3)

such that X’ = Add(Y’, 8, k) and P’ = @Q'. By definition of
Verify 4, there exists a computation

v < Verify(PK g, PK 1, BB,nc,Sub(X, 8, k), P)

such that v = 1. Let the adversary B be defined as follows:
given input K and S, the adversary B computes

(BB, X, P) + A(K,S)

and outputs (BB, Sub(X,j, ), P). We have an execution
of the experiment Exp-JCJ-Ver(Stuff(I1, 5, k), B, nc, nv, k1,
ko, k3) that concocts the election (BB, Sub(X, 3, k), P) and
tallying BB produces (Y’, Q') such that

Verify(PKr, PK 1, BB,n¢,Sub(X, 8,k), P) =1

with non-negligible probability. Moreover, since X # X'
and Y’ = Sub(X’, 8, k), we have Sub(X, 3,k) # Y’ with
non-negligible probability. It follows immediately that Succ(
Exp-JCJ-Cor(I1, B, nc, ny, k1, ke, k3)) is non-negligible, thus
deriving a contradiction and concluding our proof. O

B. Proof: Proposition [7]
We define key leakage before proving Proposition

Definition 33 (Key leakage). An election scheme 11
(Register, Vote, Tally, Verify) does not leak the tallier’s private
key if for all positive integers nc and ny, security parameters
k1 and ks, and probabilistic polynomial-time adversary A,
we have Succ(Exp-leak(II, A, k1, ks, nc,nv)) is negligible,
where Exp-leak(-) is defined as follows:

Exp-leak(I1, A, k1, ks, nc, ny) =
1 for 1 <i <ny do (pk,, sk;) < Register(SK,1,k1);
BB < A(sk1,...,skn,);
(X7 P) A Ta”y(SKT7 BB, nc, {pkz}zlzvlv kd)’
if A(X,P)= SK then
| return ]
else
| return 0

2
3
4
5
6
7

Proof of Proposition[7] Suppose II = (Register, Vote, Tally,
Verify) is an election scheme satisfying JCJ-correctness
and JCJ-verifiability that does not leak the tallier’s private
key, and Backdoor(II) (Register, Vote, Tally 5, Verify 5).
Since II does not leak the tallier’s private key, the experi-
ment Exp-JCJ-Cor(Il, A, nc, ny, k1, k2, k3) produces a bul-
letin board BB such that SK 7 € BB with negligible probabil-
ity, for all kq, ko, k3, nc, ny and A. It follows that an execu-
tion of the experiment Exp-JCJ-Cor(Backdoor(II), A, n¢, ny,
k1, k2, ks) is an execution of the experiment Exp-JCJ-Cor(
I, A, nc, ny, k1, k2, k3) with non-negligible probability and,
hence, Backdoor(II) satisfies JCJ-correctness.

We show that Backdoor(II) satisfies JCJ-verifiability by
contradiction. Suppose Succ(Exp-JCJ-Ver(Backdoor(11), A,
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ng,ny, ki, ka, k3)) is non-negligible for some k1, k3, nc,
ny, and A. Hence, there exists an execution of the experiment
Exp-JCJ-Ver(Backdoor(IT), A, nc, ny, k1, ko, k3) which sat-
isfies

Verify(PK», PK+,BB,nc,X,P) = 1A X £ X/

with non-negligible probability, where (BB, X, P) is an elec-
tion concocted by the adversary and (X', P’) is produced
by tallying BB. If there is one and only one Y such that
(SK7,Y) € BB, then X’ = Y by definition of Tally and
X = Y by definition of Verify, otherwise, the execution of
the experiment Exp-JCJ-Cor(Backdoor(I1), A, n¢, ny, k1, ka2,
ks3) is an execution of the experiment Exp-JCJ-Cor(II, A, nc,
ny, k1, ke, k3) and, hence,

Succ(Exp-JCJ-Ver(Backdoor(II), A, nc, ny, k1, k2, k3))
= Succ(Exp-JCJ-Ver(II, A, nc, nv, ki1, k2, k3)).

In both cases we derive a contradiction, thereby concluding
our proof. O

C. Proof sketch: Proposition [§|

Suppose IT = (Register, Vote, Tally, Verify) is an election
scheme satisfying JCJ-correctness and JCJ-verifiability. Fur-
ther suppose Bias(Il, Z) = (Register, Vote, Tally, Verifyy),
for some set of vectors Z. By definition of Verify, we have

Verify o (PK g, PK7,BB,n¢c,X,P) =1
implies the existence of a computation
v « Verify(PK g, PK 1, BB,n¢c, X, P)

such that v = 1 with non-negligible probability, for all PKr,
BB, n¢, X, and P. It follows that

Succ(Exp-JCJ-Cor(Bias(IT), A, nc, ny, k1, ko, k3))
< Succ(Exp-JCJ-Cor(I1, A, nc, ny, k1, ko, k3))

and

Succ(Exp-JCJ-Ver(Bias(Il), A, n¢, ny, k1, ko, k3))
< Succ(Exp-JCJ-Ver(I1, A, ne,ny, k1, ko, k3))

for all kq, ks, k3, nc, ny, and A. Hence, Bias(Il, Z) satisfies
JCJ-correctness and JCJ-verifiability. O
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